The Serverless Application Analytics Framework: Enabling Design Trade-off Evaluation for Serverless Software

R. Cordingly, Hanfei Yu, Varik Hoang, Zohreh Sadeghi, David Foster, David Perez, Rashad Hatchett, W. Lloyd
{"title":"The Serverless Application Analytics Framework: Enabling Design Trade-off Evaluation for Serverless Software","authors":"R. Cordingly, Hanfei Yu, Varik Hoang, Zohreh Sadeghi, David Foster, David Perez, Rashad Hatchett, W. Lloyd","doi":"10.1145/3429880.3430103","DOIUrl":null,"url":null,"abstract":"To help better understand factors that impact performance on Function-as-a-Service (FaaS) platforms we have developed the Serverless Application Analytics Framework (SAAF). SAAF provides a reusable framework supporting multiple programming languages that developers can integrate into a function's package for deployment to multiple commercial and open source FaaS platforms. SAAF improves the observability of FaaS function deployments by collecting forty-eight distinct metrics to enable developers to profile CPU and memory utilization, monitor infrastructure state, and observe platform scalability. In this paper, we describe SAAF in detail and introduce supporting tools highlighting important features and how to use them. Our client application, FaaS Runner, provides a tool to orchestrate workloads and automate the process of conducting experiments across FaaS platforms. We provide a case study demonstrating the integration of SAAF into an existing open source image processing pipeline built for AWS Lambda. Using FaaS Runner, we automate experiments and acquire metrics from SAAF to profile each function of the pipeline to evaluate performance implications. Finally, we summarize contributions using our tools to evaluate implications of different programming languages for serverless data processing, and to build performance models to predict runtime for serverless workloads.","PeriodicalId":224350,"journal":{"name":"Proceedings of the 2020 Sixth International Workshop on Serverless Computing","volume":"15 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 Sixth International Workshop on Serverless Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3429880.3430103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

To help better understand factors that impact performance on Function-as-a-Service (FaaS) platforms we have developed the Serverless Application Analytics Framework (SAAF). SAAF provides a reusable framework supporting multiple programming languages that developers can integrate into a function's package for deployment to multiple commercial and open source FaaS platforms. SAAF improves the observability of FaaS function deployments by collecting forty-eight distinct metrics to enable developers to profile CPU and memory utilization, monitor infrastructure state, and observe platform scalability. In this paper, we describe SAAF in detail and introduce supporting tools highlighting important features and how to use them. Our client application, FaaS Runner, provides a tool to orchestrate workloads and automate the process of conducting experiments across FaaS platforms. We provide a case study demonstrating the integration of SAAF into an existing open source image processing pipeline built for AWS Lambda. Using FaaS Runner, we automate experiments and acquire metrics from SAAF to profile each function of the pipeline to evaluate performance implications. Finally, we summarize contributions using our tools to evaluate implications of different programming languages for serverless data processing, and to build performance models to predict runtime for serverless workloads.
无服务器应用分析框架:实现无服务器软件的设计权衡评估
为了帮助更好地理解影响功能即服务(FaaS)平台性能的因素,我们开发了无服务器应用程序分析框架(SAAF)。SAAF提供了一个支持多种编程语言的可重用框架,开发人员可以将其集成到功能包中,以便部署到多个商业和开源FaaS平台。SAAF通过收集48个不同的指标来改进FaaS功能部署的可观察性,这些指标使开发人员能够分析CPU和内存利用率、监视基础结构状态以及观察平台可伸缩性。在本文中,我们详细描述了SAAF,并介绍了突出重要功能的支持工具以及如何使用它们。我们的客户端应用程序FaaS Runner提供了一个工具来编排工作负载,并自动化跨FaaS平台进行实验的过程。我们提供了一个案例研究,演示如何将SAAF集成到为AWS Lambda构建的现有开源图像处理管道中。使用FaaS Runner,我们将实验自动化,并从SAAF获取指标来描述管道的每个功能,以评估性能影响。最后,我们总结了使用我们的工具的贡献,以评估不同编程语言对无服务器数据处理的影响,并构建性能模型来预测无服务器工作负载的运行时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信