JAWS: a JavaScript framework for adaptive CPU-GPU work sharing

Xianglan Piao, Channoh Kim, Young H. Oh, Huiying Li, Jin-Chul Kim, Hanjun Kim, Jae W. Lee
{"title":"JAWS: a JavaScript framework for adaptive CPU-GPU work sharing","authors":"Xianglan Piao, Channoh Kim, Young H. Oh, Huiying Li, Jin-Chul Kim, Hanjun Kim, Jae W. Lee","doi":"10.1145/2688500.2688525","DOIUrl":null,"url":null,"abstract":"This paper introduces jAWS, a JavaScript framework for adaptive work sharing between CPU and GPU for data-parallel workloads. Unlike conventional heterogeneous parallel programming environments for JavaScript, which use only one compute device when executing a single kernel, jAWS accelerates kernel execution by exploiting both devices to realize full performance potential of heterogeneous multicores. jAWS employs an efficient work partitioning algorithm that finds an optimal work distribution between the two devices without requiring offline profiling. The jAWS runtime provides shared arrays for multiple parallel contexts, hence eliminating extra copy overhead for input and output data. Our preliminary evaluation with both CPU-friendly and GPU-friendly benchmarks demonstrates that jAWS provides good load balancing and efficient data communication between parallel contexts, to significantly outperform best single-device execution.","PeriodicalId":291839,"journal":{"name":"Proceedings of the 20th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming","volume":"20 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2688500.2688525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper introduces jAWS, a JavaScript framework for adaptive work sharing between CPU and GPU for data-parallel workloads. Unlike conventional heterogeneous parallel programming environments for JavaScript, which use only one compute device when executing a single kernel, jAWS accelerates kernel execution by exploiting both devices to realize full performance potential of heterogeneous multicores. jAWS employs an efficient work partitioning algorithm that finds an optimal work distribution between the two devices without requiring offline profiling. The jAWS runtime provides shared arrays for multiple parallel contexts, hence eliminating extra copy overhead for input and output data. Our preliminary evaluation with both CPU-friendly and GPU-friendly benchmarks demonstrates that jAWS provides good load balancing and efficient data communication between parallel contexts, to significantly outperform best single-device execution.
JAWS:用于自适应CPU-GPU工作共享的JavaScript框架
本文介绍了jAWS,一个用于数据并行工作负载的CPU和GPU之间自适应工作共享的JavaScript框架。JavaScript的传统异构并行编程环境在执行单个内核时只使用一个计算设备,与之不同的是,jAWS通过利用两个设备来实现异构多核的全部性能潜力,从而加速了内核的执行。jAWS采用了一种高效的工作划分算法,可以在两台设备之间找到最优的工作分配,而不需要离线分析。jAWS运行时为多个并行上下文提供共享数组,从而消除了输入和输出数据的额外复制开销。我们对cpu友好型和gpu友好型基准测试的初步评估表明,jAWS在并行上下文之间提供了良好的负载平衡和有效的数据通信,显著优于最佳的单设备执行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信