A. Fahad, K. Alharthi, Z. Tari, Abdulmohsen Almalawi, I. Khalil
{"title":"CluClas: Hybrid clustering-classification approach for accurate and efficient network classification","authors":"A. Fahad, K. Alharthi, Z. Tari, Abdulmohsen Almalawi, I. Khalil","doi":"10.1109/LCN.2014.6925769","DOIUrl":null,"url":null,"abstract":"The traffic classification is the foundation for many network activities, such as Quality of Service (QoS), security monitoring, Lawful Interception and Intrusion Detection Systems (IDS). A recent statistics-based approach to address the unsatisfactory results of traditional port-based and payload-based approaches has attracted attention. However, the presence of non-informative attributes and noise instances degrade the performance of this approach. Thus, to address this problem, in this paper, we propose a hybrid clustering-classification approach (called CluClas) to improve the accuracy and efficiency of network traffic classification by selecting informative attributes and representative instances. An extensive empirical study on four traffic data sets shows the effectiveness of our proposed approach.","PeriodicalId":143262,"journal":{"name":"39th Annual IEEE Conference on Local Computer Networks","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"39th Annual IEEE Conference on Local Computer Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LCN.2014.6925769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
The traffic classification is the foundation for many network activities, such as Quality of Service (QoS), security monitoring, Lawful Interception and Intrusion Detection Systems (IDS). A recent statistics-based approach to address the unsatisfactory results of traditional port-based and payload-based approaches has attracted attention. However, the presence of non-informative attributes and noise instances degrade the performance of this approach. Thus, to address this problem, in this paper, we propose a hybrid clustering-classification approach (called CluClas) to improve the accuracy and efficiency of network traffic classification by selecting informative attributes and representative instances. An extensive empirical study on four traffic data sets shows the effectiveness of our proposed approach.