Remarks on general zeroth-order Randić and general sum-connectivity indices

M. Matejic, P. Milošević, E. Milovanovic, I. Milovanovic
{"title":"Remarks on general zeroth-order Randić and general sum-connectivity indices","authors":"M. Matejic, P. Milošević, E. Milovanovic, I. Milovanovic","doi":"10.5937/SPSUNP1901011M","DOIUrl":null,"url":null,"abstract":"Let G = (V,E ), V = [v \\,v2, . . . , vn}, be a simple connected graph with n vertices, m edges and vertex degree sequence d1 > d2 > ■■■ > dn > 0, di = d(vi ). General zeroth-order Randic index of G is defined as °Ra (G) = Ση=ι d\" > and general sum-connectivity index as Xa(G) = (di + d j)α, where a is an arbitrary real number. In this paper we establish a relationship between 0Rα+β (G), ^ α -β ^ ) and °Ra (G), as well as χ α+β (G), χ α -β ^ ) and Xa (G), where α and β are arbitrary real numbers. By the appropriate choice of parameters α and β, a number of new/old inequalities that reveal relationships between various vertex and edge degree-based topological indices are obtained.","PeriodicalId":394770,"journal":{"name":"Scientific Publications of the State University of Novi Pazar Series A: Applied Mathematics, Informatics and mechanics","volume":"11 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Publications of the State University of Novi Pazar Series A: Applied Mathematics, Informatics and mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5937/SPSUNP1901011M","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Let G = (V,E ), V = [v \,v2, . . . , vn}, be a simple connected graph with n vertices, m edges and vertex degree sequence d1 > d2 > ■■■ > dn > 0, di = d(vi ). General zeroth-order Randic index of G is defined as °Ra (G) = Ση=ι d" > and general sum-connectivity index as Xa(G) = (di + d j)α, where a is an arbitrary real number. In this paper we establish a relationship between 0Rα+β (G), ^ α -β ^ ) and °Ra (G), as well as χ α+β (G), χ α -β ^ ) and Xa (G), where α and β are arbitrary real numbers. By the appropriate choice of parameters α and β, a number of new/old inequalities that reveal relationships between various vertex and edge degree-based topological indices are obtained.
关于一般零阶randici和一般和连通性指标的注释
设G = (V,E), V = [V \,v2,…], vn},是一个有n个顶点,m条边,顶点度序列d1 > d2 >■■> dn > 0, di = d(vi)的简单连通图。定义G的一般零阶随机指数为°Ra (G) = Ση=ι d ' >,一般和连通性指数为Xa(G) = (di + d j)α,其中a为任意实数。本文建立了0Rα+β (G)、^ α -β ^和°Ra (G)之间的关系,以及χ α+β (G)、χ α -β ^和Xa (G)之间的关系,其中α和β是任意实数。通过适当选择参数α和β,得到了揭示各种顶点和边度拓扑指标之间关系的新/旧不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信