Improving Online Handwritten Mathematical Expressions Recognition with Contextual Modeling

Ahmad Montaser Awal, H. Mouchère, C. Viard-Gaudin
{"title":"Improving Online Handwritten Mathematical Expressions Recognition with Contextual Modeling","authors":"Ahmad Montaser Awal, H. Mouchère, C. Viard-Gaudin","doi":"10.1109/ICFHR.2010.73","DOIUrl":null,"url":null,"abstract":"We propose in this paper a new contextual modelling method for combining syntactic and structural information for the recognition of online handwritten mathematical expressions. Those models are used to find the most likely combination of segmentation/recognition hypotheses proposed by a 2D segment or. Models are based on structural information concerning the layouts of symbols. They are learned from a mathematical expressions dataset to prevent the use of heuristic rules which are fuzzy by nature. The system is tested with a large base of synthetic expressions and also with a set of real complex expressions.","PeriodicalId":335044,"journal":{"name":"2010 12th International Conference on Frontiers in Handwriting Recognition","volume":"32 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 12th International Conference on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFHR.2010.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

We propose in this paper a new contextual modelling method for combining syntactic and structural information for the recognition of online handwritten mathematical expressions. Those models are used to find the most likely combination of segmentation/recognition hypotheses proposed by a 2D segment or. Models are based on structural information concerning the layouts of symbols. They are learned from a mathematical expressions dataset to prevent the use of heuristic rules which are fuzzy by nature. The system is tested with a large base of synthetic expressions and also with a set of real complex expressions.
利用上下文建模改进在线手写数学表达式识别
本文提出了一种结合句法和结构信息的上下文建模方法,用于在线手写数学表达式的识别。这些模型被用来寻找最可能的分割/识别假设的组合,由一个2D片段或。模型基于有关符号布局的结构信息。它们是从数学表达式数据集中学习的,以防止使用启发式规则,因为启发式规则本质上是模糊的。该系统在大量合成表达式和一组真实复杂表达式的基础上进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信