A. Kottapalli, M. Asadnia, Z. Shen, V. Subramaniam, J. Miao, M. Triantafyllou
{"title":"MEMS artificial neuromast arrays for hydrodynamic control of soft-robots","authors":"A. Kottapalli, M. Asadnia, Z. Shen, V. Subramaniam, J. Miao, M. Triantafyllou","doi":"10.1109/NEMS.2016.7758300","DOIUrl":null,"url":null,"abstract":"In this work, we present the development and experimental testing of two types of bio-inspired MEMS sensors - piezoresistive all-polymer sensors that perform steady-state flow sensing analogous to the superficial neuromasts (SNs), and piezoelectric pressure sensors which perform hydrodynamic oscillatory flow sensing similar to the canal neuromasts (CNs). Real-time underwater sensing applications of these sensors in performing hydrodynamic flow sensing to achieve improved control of soft robots is demonstrated. Experiments conducted on lab-version of a robotic stingray and a robotic fishtail validate the arrays' ability in accurately detecting the propagation velocity and flapping hydrodynamics of the robots. Experiments conducted on a kayak show that the sensors detect vortex-shedding signatures that could provide cues towards achieving energy-efficient maneuvers.","PeriodicalId":150449,"journal":{"name":"2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2016.7758300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In this work, we present the development and experimental testing of two types of bio-inspired MEMS sensors - piezoresistive all-polymer sensors that perform steady-state flow sensing analogous to the superficial neuromasts (SNs), and piezoelectric pressure sensors which perform hydrodynamic oscillatory flow sensing similar to the canal neuromasts (CNs). Real-time underwater sensing applications of these sensors in performing hydrodynamic flow sensing to achieve improved control of soft robots is demonstrated. Experiments conducted on lab-version of a robotic stingray and a robotic fishtail validate the arrays' ability in accurately detecting the propagation velocity and flapping hydrodynamics of the robots. Experiments conducted on a kayak show that the sensors detect vortex-shedding signatures that could provide cues towards achieving energy-efficient maneuvers.