A Bayesian approach for on-line max and min auditing

G. Canfora, B. Cavallo
{"title":"A Bayesian approach for on-line max and min auditing","authors":"G. Canfora, B. Cavallo","doi":"10.1145/1379287.1379292","DOIUrl":null,"url":null,"abstract":"In this paper we consider the on-line max and min query auditing problem: given a private association between fields in a data set, a sequence of max and min queries that have already been posed about the data, their corresponding answers and a new query, deny the answer if a private information is inferred or give the true answer otherwise. We give a probabilistic definition of privacy and demonstrate that max and min queries, without \"no duplicates\" assumption, can be audited by means of a Bayesian network. Moreover, we show how our auditing approach is able to manage user prior-knowledge.","PeriodicalId":245552,"journal":{"name":"International Conference on Pattern Analysis and Intelligent Systems","volume":"58 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Pattern Analysis and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1379287.1379292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

In this paper we consider the on-line max and min query auditing problem: given a private association between fields in a data set, a sequence of max and min queries that have already been posed about the data, their corresponding answers and a new query, deny the answer if a private information is inferred or give the true answer otherwise. We give a probabilistic definition of privacy and demonstrate that max and min queries, without "no duplicates" assumption, can be audited by means of a Bayesian network. Moreover, we show how our auditing approach is able to manage user prior-knowledge.
联机最大和最小审计的贝叶斯方法
本文考虑在线最大最小查询审计问题:给定数据集中字段之间的私有关联,对该数据已经提出的一系列最大最小查询及其对应的答案和一个新的查询,如果推断出私有信息则拒绝答案,否则给出真实答案。给出了隐私的概率定义,并证明了在没有“无重复”假设的情况下,可以通过贝叶斯网络对最大和最小查询进行审计。此外,我们还展示了我们的审计方法如何能够管理用户的先验知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信