Shanmuga Sundaram Karibeeran, D. Sathishkumar, Sankar Ramaiyan, Rajamanickam Subban
{"title":"Investigations on the Structure and Properties of the Hot Extruded AA2014-Nano SiCp Composite","authors":"Shanmuga Sundaram Karibeeran, D. Sathishkumar, Sankar Ramaiyan, Rajamanickam Subban","doi":"10.1115/IMECE2018-87237","DOIUrl":null,"url":null,"abstract":"Aluminium based metal matrix composites with nano particle reinforcement are currently finding wide spread applications in automobile, aerospace and space structures because of their high strength, fatigue life, excellent wear resistance, low thermal coefficient value. However, in order to use these materials for critical automotive applications, extensive study in terms of manufacturing feasibility of the composites have to be carried out. Based on the objectives, the present investigation focuses on the development of Aluminium-SiC nano composite for structural applications. The aim of this research work is to arrive at an optimum weight faction of nano particle which gives the highest properties of the nano composite. The composites were produced by stir casting route. The base alloy and the composites were extruded and subsequently subjected to age hardening treatment. Microstructural evaluation, hardness studies were carried out on both the base alloy and the composites in the as-cast and extruded conditions. The effect of extrusion on the microstructure and properties of the AA2014-0.8 wt.%SiC composites have been discussed in detail.","PeriodicalId":119074,"journal":{"name":"Volume 12: Materials: Genetics to Structures","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 12: Materials: Genetics to Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-87237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Aluminium based metal matrix composites with nano particle reinforcement are currently finding wide spread applications in automobile, aerospace and space structures because of their high strength, fatigue life, excellent wear resistance, low thermal coefficient value. However, in order to use these materials for critical automotive applications, extensive study in terms of manufacturing feasibility of the composites have to be carried out. Based on the objectives, the present investigation focuses on the development of Aluminium-SiC nano composite for structural applications. The aim of this research work is to arrive at an optimum weight faction of nano particle which gives the highest properties of the nano composite. The composites were produced by stir casting route. The base alloy and the composites were extruded and subsequently subjected to age hardening treatment. Microstructural evaluation, hardness studies were carried out on both the base alloy and the composites in the as-cast and extruded conditions. The effect of extrusion on the microstructure and properties of the AA2014-0.8 wt.%SiC composites have been discussed in detail.