A SURVIVAL ANALYSIS INCORPORATING AUXILIARY INFORMATION BY A BAYESIAN GENERALIZED METHOD OF MOMENTS: APPLICATION TO PURCHASE DURATION MODELING

R. Igari, T. Hoshino
{"title":"A SURVIVAL ANALYSIS INCORPORATING AUXILIARY INFORMATION BY A BAYESIAN GENERALIZED METHOD OF MOMENTS: APPLICATION TO PURCHASE DURATION MODELING","authors":"R. Igari, T. Hoshino","doi":"10.5183/JJSCS.1705001_242","DOIUrl":null,"url":null,"abstract":"In this study, we propose a new estimation procedure for incomplete survival data caused by nonignorable nonresponses or missing censoring indicators. It is widely known that if there is any nonignorable missingness or censoring indicators cannot be fully observed, the results from survival analysis such as the Kaplan-Meier estimator or the Cox proportional hazard model may be biased. However, it sometimes occurs that nonignorable missingness cannot be specified and that the censoring indicators are never or partially observed. We propose a Bayesian generalized method of moments (GMM) approach that utilizes population-level information to identify true survival time and estimates parameters. We apply the proposed model to analyze purchase duration in marketing using purchase history data.","PeriodicalId":338719,"journal":{"name":"Journal of the Japanese Society of Computational Statistics","volume":"62 2-3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Japanese Society of Computational Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5183/JJSCS.1705001_242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this study, we propose a new estimation procedure for incomplete survival data caused by nonignorable nonresponses or missing censoring indicators. It is widely known that if there is any nonignorable missingness or censoring indicators cannot be fully observed, the results from survival analysis such as the Kaplan-Meier estimator or the Cox proportional hazard model may be biased. However, it sometimes occurs that nonignorable missingness cannot be specified and that the censoring indicators are never or partially observed. We propose a Bayesian generalized method of moments (GMM) approach that utilizes population-level information to identify true survival time and estimates parameters. We apply the proposed model to analyze purchase duration in marketing using purchase history data.
基于贝叶斯广义矩量法的包含辅助信息的生存分析:在购买持续时间模型中的应用
在这项研究中,我们提出了一种新的估计程序,用于不可忽略的无反应或缺失审查指标导致的不完整生存数据。众所周知,如果存在不可忽略的缺失或不能完全观察到的审查指标,Kaplan-Meier估计或Cox比例风险模型等生存分析的结果可能存在偏差。然而,有时发生的情况是无法说明不可忽视的缺失,审查指标从未或部分得到遵守。我们提出了一种贝叶斯广义矩量法(GMM)方法,该方法利用种群水平信息来识别真实生存时间并估计参数。我们将提出的模型应用于利用购买历史数据分析市场营销中的购买持续时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信