Tanmay Vilas Samak, Chinmay Vilas Samak, Mingjuan Xie
{"title":"AutoDRIVE Simulator: A Simulator for Scaled Autonomous Vehicle Research and Education","authors":"Tanmay Vilas Samak, Chinmay Vilas Samak, Mingjuan Xie","doi":"10.1145/3483845.3483846","DOIUrl":null,"url":null,"abstract":"AutoDRIVE is envisioned to be an integrated research and education platform for scaled autonomous vehicles and related applications. This work is a stepping-stone towards achieving the greater goal of realizing such a platform. Particularly, this work introduces the AutoDRIVE Simulator, a high-fidelity simulator for scaled autonomous vehicles. The proposed simulation ecosystem is developed atop the Unity game engine, and exploits its features in order to simulate realistic system dynamics and render photorealistic graphics. It comprises of a scaled vehicle model equipped with a comprehensive sensor suite for redundant perception, a set of actuators for constrained motion control and a fully functional lighting system for illumination and signaling. It also provides a modular environment development kit, which comprises of various environment modules that aid in reconfigurable construction of the scene. Additionally, the simulator features a communication bridge in order to extend an interface to the autonomous driving software stack developed independently by the users. This work describes some of the prominent components of this simulation system along with some key features that it has to offer in order to accelerate education and research aimed at autonomous driving.","PeriodicalId":134636,"journal":{"name":"Proceedings of the 2021 2nd International Conference on Control, Robotics and Intelligent System","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 2nd International Conference on Control, Robotics and Intelligent System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3483845.3483846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
AutoDRIVE is envisioned to be an integrated research and education platform for scaled autonomous vehicles and related applications. This work is a stepping-stone towards achieving the greater goal of realizing such a platform. Particularly, this work introduces the AutoDRIVE Simulator, a high-fidelity simulator for scaled autonomous vehicles. The proposed simulation ecosystem is developed atop the Unity game engine, and exploits its features in order to simulate realistic system dynamics and render photorealistic graphics. It comprises of a scaled vehicle model equipped with a comprehensive sensor suite for redundant perception, a set of actuators for constrained motion control and a fully functional lighting system for illumination and signaling. It also provides a modular environment development kit, which comprises of various environment modules that aid in reconfigurable construction of the scene. Additionally, the simulator features a communication bridge in order to extend an interface to the autonomous driving software stack developed independently by the users. This work describes some of the prominent components of this simulation system along with some key features that it has to offer in order to accelerate education and research aimed at autonomous driving.