DeepReading @ SardiStance 2020: Combining Textual, Social and Emotional Features

María S. Espinosa, Rodrigo Agerri, Álvaro Rodrigo, Roberto Centeno
{"title":"DeepReading @ SardiStance 2020: Combining Textual, Social and Emotional Features","authors":"María S. Espinosa, Rodrigo Agerri, Álvaro Rodrigo, Roberto Centeno","doi":"10.4000/BOOKS.AACCADEMIA.7129","DOIUrl":null,"url":null,"abstract":"In this paper we describe our participation to the SardiStance shared task held at EVALITA 2020. We developed a set of classifiers that combined text features, such as the best performing systems based on large pre-trained language models, together with user profile features, such as psychological traits and social media user interactions. The classification algorithms chosen for our models were various monolingual and multilingual Transformer models for text only classification, and XGBoost for the non-textual features. The combination of the textual and contextual models was performed by a weighted voting ensemble learning system. Our approach obtained the best score for Task B, on Contextual Stance Detection.","PeriodicalId":184564,"journal":{"name":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","volume":"12 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4000/BOOKS.AACCADEMIA.7129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper we describe our participation to the SardiStance shared task held at EVALITA 2020. We developed a set of classifiers that combined text features, such as the best performing systems based on large pre-trained language models, together with user profile features, such as psychological traits and social media user interactions. The classification algorithms chosen for our models were various monolingual and multilingual Transformer models for text only classification, and XGBoost for the non-textual features. The combination of the textual and contextual models was performed by a weighted voting ensemble learning system. Our approach obtained the best score for Task B, on Contextual Stance Detection.
深度阅读@ SardiStance 2020:结合文本、社交和情感特征
在本文中,我们描述了我们参与在EVALITA 2020举行的SardiStance共享任务。我们开发了一套分类器,将文本特征(如基于大型预训练语言模型的最佳表现系统)与用户配置文件特征(如心理特征和社交媒体用户交互)结合在一起。为我们的模型选择的分类算法是用于纯文本分类的各种单语言和多语言Transformer模型,以及用于非文本特征的XGBoost。文本模型和上下文模型的结合由加权投票集成学习系统完成。我们的方法在任务B的情境姿态检测中获得了最高分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信