Identifying Grey Sheep Users in Collaborative Filtering: A Distribution-Based Technique

Benjamin Gras, A. Brun, A. Boyer
{"title":"Identifying Grey Sheep Users in Collaborative Filtering: A Distribution-Based Technique","authors":"Benjamin Gras, A. Brun, A. Boyer","doi":"10.1145/2930238.2930242","DOIUrl":null,"url":null,"abstract":"The collaborative filtering (CF) approach in recommender systems assumes that users' preferences are consistent among users. Although accurate, this approach fails on some users. We presume that some of these users belong to a small community of users who have unusual preferences, such users are not compliant with the CF underlying assumption. They are grey sheep users. This paper aims at accurately identifying grey sheep users. We introduce a new distribution-based grey sheep users identification technique, that borrows from outlier detection and from information retrieval, while taking into account the specificities of preference data on which CF relies: extreme sparsity, imprecision and users' bias. The experimental evaluation conducted on a state-of-the-art dataset shows that this new distribution-based technique outperforms state-of-the-art grey sheep users identification techniques.","PeriodicalId":339100,"journal":{"name":"Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization","volume":"278 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2930238.2930242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

The collaborative filtering (CF) approach in recommender systems assumes that users' preferences are consistent among users. Although accurate, this approach fails on some users. We presume that some of these users belong to a small community of users who have unusual preferences, such users are not compliant with the CF underlying assumption. They are grey sheep users. This paper aims at accurately identifying grey sheep users. We introduce a new distribution-based grey sheep users identification technique, that borrows from outlier detection and from information retrieval, while taking into account the specificities of preference data on which CF relies: extreme sparsity, imprecision and users' bias. The experimental evaluation conducted on a state-of-the-art dataset shows that this new distribution-based technique outperforms state-of-the-art grey sheep users identification techniques.
协同过滤中的灰羊用户识别:一种基于分布的技术
推荐系统中的协同过滤(CF)方法假设用户之间的偏好是一致的。尽管这种方法是准确的,但对某些用户来说却行不通。我们假设其中一些用户属于一个小的用户社区,他们有不寻常的偏好,这样的用户不符合CF的基本假设。他们是灰羊用户。本文旨在准确识别灰羊用户。我们引入了一种新的基于分布的灰羊用户识别技术,该技术借鉴了离群值检测和信息检索,同时考虑了CF所依赖的偏好数据的特殊性:极端稀疏性、不精确性和用户偏见。在最先进的数据集上进行的实验评估表明,这种基于分布的新技术优于最先进的灰羊用户识别技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信