{"title":"Application-specific 3D Network-on-Chip design using simulated allocation","authors":"Pingqiang Zhou, Ping-Hung Yuh, S. Sapatnekar","doi":"10.1109/ASPDAC.2010.5419830","DOIUrl":null,"url":null,"abstract":"Three-dimensional (3D) silicon integration technologies have provided new opportunities for Network-on-Chip (NoC) architecture design in Systems-on-Chip (SoCs). In this paper, we consider the application-specific NoC architecture design problem in a 3D environment. We present an efficient floorplan-aware 3D NoC synthesis algorithm, based on simulated allocation, a stochastic method for traffic flow routing, and accurate power and delay models for NoC components. We demonstrate that this method finds greatly improved topologies for various design objectives such as NoC power (average savings of 34%), network latency (average reduction of 35%) and chip temperature (average reduction of 20%).","PeriodicalId":152569,"journal":{"name":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"68 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.2010.5419830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34
Abstract
Three-dimensional (3D) silicon integration technologies have provided new opportunities for Network-on-Chip (NoC) architecture design in Systems-on-Chip (SoCs). In this paper, we consider the application-specific NoC architecture design problem in a 3D environment. We present an efficient floorplan-aware 3D NoC synthesis algorithm, based on simulated allocation, a stochastic method for traffic flow routing, and accurate power and delay models for NoC components. We demonstrate that this method finds greatly improved topologies for various design objectives such as NoC power (average savings of 34%), network latency (average reduction of 35%) and chip temperature (average reduction of 20%).