{"title":"Escaping the Academic Sandbox: Realizing VPR Circuits on Xilinx Devices","authors":"Eddie Hung, F. Eslami, S. Wilton","doi":"10.1109/FCCM.2013.40","DOIUrl":null,"url":null,"abstract":"This paper presents a new, open-source method for FPGA CAD researchers to realize their techniques on real Xilinx devices. Specifically, we extend the Verilog-To-Routing (VTR) suite, which includes the VPR place-and-route CAD tool on which many FPGA innovations have been based, to generate working Xilinx bitstreams via the Xilinx Design Language (XDL). Currently, we can faithfully translate VPR's heterogeneous packing and placement results into an exact Xilinx `map' netlist, which is then routed by its `par' tool. We showcase the utility of this new method with two compelling applications targeting a 40nm Virtex-6 device: a fair comparison of the area, delay, and CAD runtime of academia's state-of-the-art VTR How with a commercial, closed-source equivalent, along with a CAD experiment evaluated using physical measurements of on-chip power consumption and die temperature, over time. This extended How - VTR-to-Bitstream - is released to the community with the hope that it can enhance existing research projects as well as unlock new ones.","PeriodicalId":269887,"journal":{"name":"2013 IEEE 21st Annual International Symposium on Field-Programmable Custom Computing Machines","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 21st Annual International Symposium on Field-Programmable Custom Computing Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2013.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49
Abstract
This paper presents a new, open-source method for FPGA CAD researchers to realize their techniques on real Xilinx devices. Specifically, we extend the Verilog-To-Routing (VTR) suite, which includes the VPR place-and-route CAD tool on which many FPGA innovations have been based, to generate working Xilinx bitstreams via the Xilinx Design Language (XDL). Currently, we can faithfully translate VPR's heterogeneous packing and placement results into an exact Xilinx `map' netlist, which is then routed by its `par' tool. We showcase the utility of this new method with two compelling applications targeting a 40nm Virtex-6 device: a fair comparison of the area, delay, and CAD runtime of academia's state-of-the-art VTR How with a commercial, closed-source equivalent, along with a CAD experiment evaluated using physical measurements of on-chip power consumption and die temperature, over time. This extended How - VTR-to-Bitstream - is released to the community with the hope that it can enhance existing research projects as well as unlock new ones.