Numerical Simulation on Friction Drag Reduction Effect due to Straight-Chain Spring-Damper Elements in Turbulent Channel Flow

Yuta Utada, H. Mamori, K. Iwamoto, A. Murata, Y. Kawaguchi, H. Ando, T. Senda
{"title":"Numerical Simulation on Friction Drag Reduction Effect due to Straight-Chain Spring-Damper Elements in Turbulent Channel Flow","authors":"Yuta Utada, H. Mamori, K. Iwamoto, A. Murata, Y. Kawaguchi, H. Ando, T. Senda","doi":"10.1299/KIKAIB.79.1937","DOIUrl":null,"url":null,"abstract":"Drag-reducing flow owing to polymer additives in wall turbulence is investigated by means of numerical simulations. A spring-damper chain element model is employed to express a spatial concentration and flexible motion of the polymer in a turbulent flow. The model consists of some beads linked by springs and dampers. The influence of the model’s length upon the turbulent flow is mainly focused. As lengthening the model, the skin-friction drag decreases since the turbulent contribution to the skin-friction coefficient decreases while the body force term due to the model increases. The behavior of the model and the energy transport process in the drag reducing flow due to the model are discussed to clarify the mechanism of the drag reduction.","PeriodicalId":331123,"journal":{"name":"Transactions of the Japan Society of Mechanical Engineers. B","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Japan Society of Mechanical Engineers. B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/KIKAIB.79.1937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Drag-reducing flow owing to polymer additives in wall turbulence is investigated by means of numerical simulations. A spring-damper chain element model is employed to express a spatial concentration and flexible motion of the polymer in a turbulent flow. The model consists of some beads linked by springs and dampers. The influence of the model’s length upon the turbulent flow is mainly focused. As lengthening the model, the skin-friction drag decreases since the turbulent contribution to the skin-friction coefficient decreases while the body force term due to the model increases. The behavior of the model and the energy transport process in the drag reducing flow due to the model are discussed to clarify the mechanism of the drag reduction.
紊流通道中直链弹簧-阻尼器摩擦减阻效应的数值模拟
采用数值模拟的方法研究了聚合物添加剂在壁面湍流中的减阻流动。采用弹簧-阻尼链单元模型来表达聚合物在湍流中的空间集中和柔性运动。该模型由一些由弹簧和阻尼器连接的珠子组成。重点研究了模型长度对湍流流动的影响。随着模型的延长,摩擦阻力减小,因为湍流对摩擦系数的贡献减小,而模型引起的体力项增大。讨论了模型的行为以及模型在减阻流中的能量输运过程,阐明了模型的减阻机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信