A. Huynh, P. Håkansson, Shaofang Gong, Leif Odselius
{"title":"High-speed board-to-board interconnects utilizing flexible foils and elastomeric connectors","authors":"A. Huynh, P. Håkansson, Shaofang Gong, Leif Odselius","doi":"10.1109/HDP.2006.1707585","DOIUrl":null,"url":null,"abstract":"This paper presents a board-to-board interconnect technique utilizing elastomeric connectors and parallel microstrip lines on a flexible foil cable with low dielectric loss (tandelta = 0.002). It is shown that a pad structure combined with an elastomeric connector can be co-designed such that a good signal integrity and thus a high data transmission rate is achieved. It is also shown that 2 Gbps data transmission rate can be achieved with a 490-mm-long microstrip on the flexible cable, where crosstalk is taken into account. Utilizing the elastomeric connector together with the flat and flexible cable, dense parallel microstrips can easily be designed and processed since standard printed circuit board processing techniques can be utilized","PeriodicalId":406794,"journal":{"name":"Conference on High Density Microsystem Design and Packaging and Component Failure Analysis, 2006. HDP'06.","volume":"25 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on High Density Microsystem Design and Packaging and Component Failure Analysis, 2006. HDP'06.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HDP.2006.1707585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a board-to-board interconnect technique utilizing elastomeric connectors and parallel microstrip lines on a flexible foil cable with low dielectric loss (tandelta = 0.002). It is shown that a pad structure combined with an elastomeric connector can be co-designed such that a good signal integrity and thus a high data transmission rate is achieved. It is also shown that 2 Gbps data transmission rate can be achieved with a 490-mm-long microstrip on the flexible cable, where crosstalk is taken into account. Utilizing the elastomeric connector together with the flat and flexible cable, dense parallel microstrips can easily be designed and processed since standard printed circuit board processing techniques can be utilized