Neural clustering algorithms for classification and pre-placement of VLSI cells

L. Raffo, D. Caviglia, G. Bisio
{"title":"Neural clustering algorithms for classification and pre-placement of VLSI cells","authors":"L. Raffo, D. Caviglia, G. Bisio","doi":"10.1109/CMPEUR.1992.218423","DOIUrl":null,"url":null,"abstract":"The authors present modifications to Kohonen autoassociative maps to increase their efficiency for clustering and decrease their sensitivity to initial conditions. A new update rule is described for the classification for similarity. Some test results are presented for comparison between different algorithms. The new neural network algorithm was applied to the problem of preplacement of VLSI cells with improvement in the quality of the solution and computational time.<<ETX>>","PeriodicalId":390273,"journal":{"name":"CompEuro 1992 Proceedings Computer Systems and Software Engineering","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CompEuro 1992 Proceedings Computer Systems and Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CMPEUR.1992.218423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The authors present modifications to Kohonen autoassociative maps to increase their efficiency for clustering and decrease their sensitivity to initial conditions. A new update rule is described for the classification for similarity. Some test results are presented for comparison between different algorithms. The new neural network algorithm was applied to the problem of preplacement of VLSI cells with improvement in the quality of the solution and computational time.<>
VLSI细胞分类与预放置的神经聚类算法
作者对Kohonen自关联映射进行了改进,提高了它们的聚类效率,降低了它们对初始条件的敏感性。为相似性分类描述了一个新的更新规则。给出了一些测试结果,对不同算法进行了比较。将新的神经网络算法应用于超大规模集成电路单元置换问题,提高了求解质量和计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信