A Hybrid Harmony Search Method Based on OBL

X. Gao, Xiaolei Wang, S. Ovaska
{"title":"A Hybrid Harmony Search Method Based on OBL","authors":"X. Gao, Xiaolei Wang, S. Ovaska","doi":"10.1109/CSE.2010.26","DOIUrl":null,"url":null,"abstract":"The Harmony Search (HS) method is an emerging meta-heuristic optimization algorithm. However, like most of the evolutionary computation techniques, it sometimes suffers from a rather slow search speed, and fails to find the global optima in an efficient way. In this paper, we propose and study a hybrid optimization approach, in which the HS is merged together with the Opposition-Based Learning (OBL). Our modified HS, namely HS-OBL, has an improved convergence property. Simulations of 23 typical benchmark problems demonstrate that the HS-OBL can indeed yield a superior optimization performance over the regular HS method.","PeriodicalId":342688,"journal":{"name":"2010 13th IEEE International Conference on Computational Science and Engineering","volume":"41 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 13th IEEE International Conference on Computational Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSE.2010.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The Harmony Search (HS) method is an emerging meta-heuristic optimization algorithm. However, like most of the evolutionary computation techniques, it sometimes suffers from a rather slow search speed, and fails to find the global optima in an efficient way. In this paper, we propose and study a hybrid optimization approach, in which the HS is merged together with the Opposition-Based Learning (OBL). Our modified HS, namely HS-OBL, has an improved convergence property. Simulations of 23 typical benchmark problems demonstrate that the HS-OBL can indeed yield a superior optimization performance over the regular HS method.
基于OBL的混合和声搜索方法
和谐搜索(HS)方法是一种新兴的元启发式优化算法。然而,与大多数进化计算技术一样,它有时也存在搜索速度较慢的问题,无法有效地找到全局最优解。在本文中,我们提出并研究了一种混合优化方法,该方法将HS与基于对立的学习(OBL)相结合。我们改进的HS,即HS- obl,具有更好的收敛性。对23个典型基准问题的仿真表明,HS- obl确实比常规HS方法具有更好的优化性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信