Adaptive Persymmetric Subspace Detector for Distributed Target

Zikeng Xie, T. Jian, Guangfen Wei, Xiaodong Huang, Zhuo Tong
{"title":"Adaptive Persymmetric Subspace Detector for Distributed Target","authors":"Zikeng Xie, T. Jian, Guangfen Wei, Xiaodong Huang, Zhuo Tong","doi":"10.1109/ICSP54964.2022.9778232","DOIUrl":null,"url":null,"abstract":"In this paper, we deal with the problem of adaptive detection for distributed target in homogeneous Gaussian clutter with unknown persymmetric covariance. The distributed target is located in a multi-rank subspace and its coordinates are unknown. We devise a persymmetric subspace detector by utilizing the one-step Rao criteria. Ultimately, the numerical results show that, the proposed detector is constant false alarm rate (CFAR) with respect to unknown clutter covariance matrix. Moreover, it also has the edge on detection performance by comparing with the existing unstructured detectors, especially in training-limited scenarios.","PeriodicalId":363766,"journal":{"name":"2022 7th International Conference on Intelligent Computing and Signal Processing (ICSP)","volume":"343 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Conference on Intelligent Computing and Signal Processing (ICSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSP54964.2022.9778232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we deal with the problem of adaptive detection for distributed target in homogeneous Gaussian clutter with unknown persymmetric covariance. The distributed target is located in a multi-rank subspace and its coordinates are unknown. We devise a persymmetric subspace detector by utilizing the one-step Rao criteria. Ultimately, the numerical results show that, the proposed detector is constant false alarm rate (CFAR) with respect to unknown clutter covariance matrix. Moreover, it also has the edge on detection performance by comparing with the existing unstructured detectors, especially in training-limited scenarios.
分布式目标的自适应超对称子空间检测器
研究了具有未知过对称协方差的均匀高斯杂波中分布式目标的自适应检测问题。分布式目标位于多秩子空间中,其坐标未知。利用一步Rao准则设计了一个超对称子空间检测器。最后,数值计算结果表明,该检测器对于未知杂波协方差矩阵具有恒定虚警率(CFAR)。此外,与现有的非结构化检测器相比,它在检测性能上也具有优势,特别是在训练受限的场景下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信