A systematic approach to seizure prediction using genetic and classifier based feature selection

M. D'Alessandro, G. Vachtsevanos, R. Esteller, J. Echauz, Denise Sewell, B. Litt
{"title":"A systematic approach to seizure prediction using genetic and classifier based feature selection","authors":"M. D'Alessandro, G. Vachtsevanos, R. Esteller, J. Echauz, Denise Sewell, B. Litt","doi":"10.1109/ICDSP.2002.1028162","DOIUrl":null,"url":null,"abstract":"Currently, there is no standard approach for evaluating the intracranial encephalographic signals for seizure prediction. This study evaluates the IEEG signals by applying a systematic approach to feature selection, classification and validation to predict seizures. After preprocessing and processing, a genetic algorithm selects reasonable features off-line from a preselected group of features to serve as inputs to the classifier based feature selection process. A probabilistic neural network is used to select the optimal feature vector using a reed forward sequential approach on the training data followed by classification. A study of four patients resulted in a 62.5% average probability of prediction and a block false positive rate of 0.2775 false positive predictions per hour.","PeriodicalId":351073,"journal":{"name":"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)","volume":"75 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2002.1028162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Currently, there is no standard approach for evaluating the intracranial encephalographic signals for seizure prediction. This study evaluates the IEEG signals by applying a systematic approach to feature selection, classification and validation to predict seizures. After preprocessing and processing, a genetic algorithm selects reasonable features off-line from a preselected group of features to serve as inputs to the classifier based feature selection process. A probabilistic neural network is used to select the optimal feature vector using a reed forward sequential approach on the training data followed by classification. A study of four patients resulted in a 62.5% average probability of prediction and a block false positive rate of 0.2775 false positive predictions per hour.
一种基于遗传和分类器特征选择的癫痫发作预测系统方法
目前,尚无标准的方法来评估颅内脑电图信号对癫痫发作的预测。本研究通过应用系统的特征选择、分类和验证方法来评估脑电图信号,以预测癫痫发作。遗传算法经过预处理和处理后,从预先选择的特征组中离线选择合理的特征,作为基于分类器的特征选择过程的输入。利用概率神经网络对训练数据进行前向排序,选择最优特征向量,然后进行分类。一项针对4名患者的研究结果显示,预测的平均概率为62.5%,每小时的误报率为0.2775。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信