Sketched Stochastic Dictionary Learning for large‐scale data and application to high‐throughput mass spectrometry

O. Permiakova, T. Burger
{"title":"Sketched Stochastic Dictionary Learning for large‐scale data and application to high‐throughput mass spectrometry","authors":"O. Permiakova, T. Burger","doi":"10.1002/sam.11542","DOIUrl":null,"url":null,"abstract":"Factorization of large data corpora has emerged as an essential technique to extract dictionaries (sets of patterns that are meaningful for sparse encoding). Following this line, we present a novel algorithm based on compressive learning theory. In this framework, the (arbitrarily large) dataset of interest is replaced by a fixed‐size sketch resulting from a random sampling of the data distribution characteristic function. We apply our algorithm to the extraction of chromatographic elution profiles in mass spectrometry data, where it demonstrates its efficiency and interest compared to other related algorithms.","PeriodicalId":342679,"journal":{"name":"Statistical Analysis and Data Mining: The ASA Data Science Journal","volume":"101 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining: The ASA Data Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sam.11542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Factorization of large data corpora has emerged as an essential technique to extract dictionaries (sets of patterns that are meaningful for sparse encoding). Following this line, we present a novel algorithm based on compressive learning theory. In this framework, the (arbitrarily large) dataset of interest is replaced by a fixed‐size sketch resulting from a random sampling of the data distribution characteristic function. We apply our algorithm to the extraction of chromatographic elution profiles in mass spectrometry data, where it demonstrates its efficiency and interest compared to other related algorithms.
大规模数据的随机字典学习和高通量质谱的应用
大型数据语料库的分解已经成为提取字典(对稀疏编码有意义的模式集)的基本技术。在此基础上,我们提出了一种基于压缩学习理论的新算法。在这个框架中,感兴趣的(任意大的)数据集被由数据分布特征函数的随机抽样产生的固定大小的草图所取代。我们将我们的算法应用于质谱数据中色谱洗脱剖面的提取,与其他相关算法相比,它显示了它的效率和兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信