{"title":"PLSA-based image auto-annotation: constraining the latent space","authors":"Florent Monay, D. Gática-Pérez","doi":"10.1145/1027527.1027608","DOIUrl":null,"url":null,"abstract":"We address the problem of unsupervised image auto-annotation with probabilistic latent space models. Unlike most previous works, which build latent space representations assuming equal relevance for the text and visual modalities, we propose a new way of modeling multi-modal co-occurrences, constraining the definition of the latent space to ensure its consistency in semantic terms (words), while retaining the ability to jointly model visual information. The concept is implemented by a linked pair of Probabilistic Latent Semantic Analysis (PLSA) models. On a 16000-image collection, we show with extensive experiments that our approach significantly outperforms previous joint models.","PeriodicalId":292207,"journal":{"name":"MULTIMEDIA '04","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"283","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MULTIMEDIA '04","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1027527.1027608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 283
Abstract
We address the problem of unsupervised image auto-annotation with probabilistic latent space models. Unlike most previous works, which build latent space representations assuming equal relevance for the text and visual modalities, we propose a new way of modeling multi-modal co-occurrences, constraining the definition of the latent space to ensure its consistency in semantic terms (words), while retaining the ability to jointly model visual information. The concept is implemented by a linked pair of Probabilistic Latent Semantic Analysis (PLSA) models. On a 16000-image collection, we show with extensive experiments that our approach significantly outperforms previous joint models.