Big Data Analytics from the Rich Cloud to the Frugal Edge

Feras M. Awaysheh, Riccardo Tommasini, Ahmed Awad
{"title":"Big Data Analytics from the Rich Cloud to the Frugal Edge","authors":"Feras M. Awaysheh, Riccardo Tommasini, Ahmed Awad","doi":"10.1109/EDGE60047.2023.00054","DOIUrl":null,"url":null,"abstract":"Modern systems and applications generate and consume an enormous amount of data from different sources, including mobile edge computing and IoT systems. Our ability to locate and analyze these massive amounts of data will shape the future, building next-generation Big Data Analytics (BDA) and artificial intelligence systems in critical domains. Traditionally, big data materialize in a centralized repository (e.g., the cloud) for running sophisticated analytics using decent computation. Nevertheless, many modern applications and critical domains require low-latency data analysis with the right decision at the right time standard for building trust. With the advent of edge computing, that traditional deployment model shifted closer to the data sources at the network’s edge. Such a shift was motivated by minimized latency, increased uptime, and enhanced efficiencies. This paper studies the BDA building blocks, analyzes the deployment requirements for edge-based BDA QoS, and drafts future trends. It also discusses critical open issues and further research directions for the next step of edge-based BDA.","PeriodicalId":369407,"journal":{"name":"2023 IEEE International Conference on Edge Computing and Communications (EDGE)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Edge Computing and Communications (EDGE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDGE60047.2023.00054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Modern systems and applications generate and consume an enormous amount of data from different sources, including mobile edge computing and IoT systems. Our ability to locate and analyze these massive amounts of data will shape the future, building next-generation Big Data Analytics (BDA) and artificial intelligence systems in critical domains. Traditionally, big data materialize in a centralized repository (e.g., the cloud) for running sophisticated analytics using decent computation. Nevertheless, many modern applications and critical domains require low-latency data analysis with the right decision at the right time standard for building trust. With the advent of edge computing, that traditional deployment model shifted closer to the data sources at the network’s edge. Such a shift was motivated by minimized latency, increased uptime, and enhanced efficiencies. This paper studies the BDA building blocks, analyzes the deployment requirements for edge-based BDA QoS, and drafts future trends. It also discusses critical open issues and further research directions for the next step of edge-based BDA.
从富云到节俭边缘的大数据分析
现代系统和应用程序生成和消耗来自不同来源的大量数据,包括移动边缘计算和物联网系统。我们定位和分析这些海量数据的能力将塑造未来,在关键领域建立下一代大数据分析(BDA)和人工智能系统。传统上,大数据在一个集中的存储库(例如云)中实现,用于使用体面的计算运行复杂的分析。然而,许多现代应用程序和关键领域需要低延迟的数据分析,并在正确的时间标准下做出正确的决策,以建立信任。随着边缘计算的出现,传统的部署模型更接近网络边缘的数据源。这种转变的动机是最小化延迟、增加正常运行时间和提高效率。研究了BDA的构建模块,分析了基于边缘的BDA QoS的部署需求,并提出了未来的发展趋势。讨论了基于边缘的BDA下一步的关键开放性问题和进一步的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信