A Study of Variable Structure and Sliding Mode Filters for Robust Estimation of Mechatronic Systems

S. Andrew Gadsden, M. Al-Shabi
{"title":"A Study of Variable Structure and Sliding Mode Filters for Robust Estimation of Mechatronic Systems","authors":"S. Andrew Gadsden, M. Al-Shabi","doi":"10.1109/IEMTRONICS51293.2020.9216381","DOIUrl":null,"url":null,"abstract":"In this paper, a study of estimation strategies based on variable structure and sliding mode theory is performed. The smooth variable structure filter (SVSF) and the new sliding innovation filter (SIF) are based on similar sliding mode concepts but with some notable differences. The relevant literature and background are explored and the SVSF and SIF estimation algorithms are presented. For comparison purposes, the two estimation strategies are applied on a mechatronic system. The results indicate that although both the SVSF and SIF provide robust estimates to faults, the SIF formulation provides slightly more accurate estimates while maintaining robustness, and is less computationally complex.","PeriodicalId":269697,"journal":{"name":"2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMTRONICS51293.2020.9216381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

In this paper, a study of estimation strategies based on variable structure and sliding mode theory is performed. The smooth variable structure filter (SVSF) and the new sliding innovation filter (SIF) are based on similar sliding mode concepts but with some notable differences. The relevant literature and background are explored and the SVSF and SIF estimation algorithms are presented. For comparison purposes, the two estimation strategies are applied on a mechatronic system. The results indicate that although both the SVSF and SIF provide robust estimates to faults, the SIF formulation provides slightly more accurate estimates while maintaining robustness, and is less computationally complex.
机电系统鲁棒估计的变结构和滑模滤波器研究
本文对基于变结构和滑模理论的估计策略进行了研究。平滑变结构滤波器(SVSF)和新型滑动创新滤波器(SIF)基于相似的滑模概念,但有一些显著的区别。对相关文献和背景进行了研究,并介绍了svm和SIF估计算法。为了比较,本文将这两种估计策略应用于一个机电系统。结果表明,尽管SVSF和SIF都提供了对故障的鲁棒估计,但SIF公式在保持鲁棒性的同时提供了更准确的估计,并且计算复杂度更低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信