Bone microstructure reconstructions from few projections with stochastic nonlinear diffusion

L. Wang, B. Sixou, F. Peyrin
{"title":"Bone microstructure reconstructions from few projections with stochastic nonlinear diffusion","authors":"L. Wang, B. Sixou, F. Peyrin","doi":"10.5281/ZENODO.44155","DOIUrl":null,"url":null,"abstract":"In this work, we use a stochastic diffusion equation for the reconstruction of binary tomography cross-sections obtained from a small number of projections. The aim of this new method is to escape from local minima by changing the shape of the boundaries of the image. First, an initial binary image is reconstructed with a deterministic Total Variation regularization method, and then this binary reconstructed image is refined by a stochastic partial differential equation with singular diffusivity and a gradient dependent noise. This method is tested on a 256 × 256 experimental micro-CT trabecular bone image with different additive Gaussian noises. The reconstruction images are clearly improved.","PeriodicalId":198408,"journal":{"name":"2014 22nd European Signal Processing Conference (EUSIPCO)","volume":"37 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.44155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this work, we use a stochastic diffusion equation for the reconstruction of binary tomography cross-sections obtained from a small number of projections. The aim of this new method is to escape from local minima by changing the shape of the boundaries of the image. First, an initial binary image is reconstructed with a deterministic Total Variation regularization method, and then this binary reconstructed image is refined by a stochastic partial differential equation with singular diffusivity and a gradient dependent noise. This method is tested on a 256 × 256 experimental micro-CT trabecular bone image with different additive Gaussian noises. The reconstruction images are clearly improved.
基于随机非线性扩散的少量投影重建骨微结构
在这项工作中,我们使用随机扩散方程来重建从少量投影获得的二进制断层扫描截面。这种新方法的目的是通过改变图像边界的形状来摆脱局部极小值。首先,利用确定性全变分正则化方法重构初始二值图像,然后利用具有奇异扩散率和梯度相关噪声的随机偏微分方程对重构图像进行细化。在具有不同加性高斯噪声的256 × 256实验微ct骨小梁图像上对该方法进行了测试。重建图像明显改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信