Exponentiated Power Lindley-Logarithmic Distribution and its Applications

A. Musa, S. Onyeagu, Okechukwu J. Obulezi
{"title":"Exponentiated Power Lindley-Logarithmic Distribution and its Applications","authors":"A. Musa, S. Onyeagu, Okechukwu J. Obulezi","doi":"10.9734/arjom/2023/v19i8686","DOIUrl":null,"url":null,"abstract":"This article proposes a new distribution call the Exponentiated Power Lindley-Logarithmic Distribution for modeling real life data. The distribution is motivated by the Exponentiated Power Lindley distribution. The quantile function is derived and the Maximum likelihood estimates of the parameters are also derived. The distribution performed better in simulation study than the competing distribution. The distribution can model real life biomedical phenomena and agricultural events.","PeriodicalId":281529,"journal":{"name":"Asian Research Journal of Mathematics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Research Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/arjom/2023/v19i8686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This article proposes a new distribution call the Exponentiated Power Lindley-Logarithmic Distribution for modeling real life data. The distribution is motivated by the Exponentiated Power Lindley distribution. The quantile function is derived and the Maximum likelihood estimates of the parameters are also derived. The distribution performed better in simulation study than the competing distribution. The distribution can model real life biomedical phenomena and agricultural events.
幂次林德利对数分布及其应用
本文提出了一种新的分布,称为指数幂林德利对数分布,用于模拟现实生活中的数据。该分布由幂次林德利分布驱动。导出了分位数函数,并导出了参数的最大似然估计。该分布在模拟研究中表现优于竞争分布。该分布可以模拟现实生活中的生物医学现象和农业事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信