Binarization Free Layout Analysis for Arabic Historical Documents Using Fully Convolutional Networks

Berat Kurar Barakat, Jihad El-Sana
{"title":"Binarization Free Layout Analysis for Arabic Historical Documents Using Fully Convolutional Networks","authors":"Berat Kurar Barakat, Jihad El-Sana","doi":"10.1109/ASAR.2018.8480333","DOIUrl":null,"url":null,"abstract":"We present a Fully Convolutional Network based method for layout analysis of non-binarized historical Arabic manuscripts. The document image is segmented into main text and side text regions by dense pixel prediction. Convolutional part of the network can learn useful features from the non-binarized document images and is robust to degradation and uncontrained layouts. We have evaluated the proposed method on a private dataset containing challenging historical Arabic manuscripts to demonstrate it effectiveness.","PeriodicalId":165564,"journal":{"name":"2018 IEEE 2nd International Workshop on Arabic and Derived Script Analysis and Recognition (ASAR)","volume":"218 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 2nd International Workshop on Arabic and Derived Script Analysis and Recognition (ASAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAR.2018.8480333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

We present a Fully Convolutional Network based method for layout analysis of non-binarized historical Arabic manuscripts. The document image is segmented into main text and side text regions by dense pixel prediction. Convolutional part of the network can learn useful features from the non-binarized document images and is robust to degradation and uncontrained layouts. We have evaluated the proposed method on a private dataset containing challenging historical Arabic manuscripts to demonstrate it effectiveness.
使用全卷积网络的阿拉伯历史文献二值化自由布局分析
提出了一种基于全卷积网络的非二值化阿拉伯文手稿布局分析方法。通过密集像素预测将文档图像分割为主文本和副文本区域。网络的卷积部分可以从非二值化的文档图像中学习有用的特征,并且对退化和无约束布局具有鲁棒性。我们在包含具有挑战性的历史阿拉伯手稿的私人数据集上评估了所提出的方法,以证明其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信