{"title":"Helix: Unsupervised Grammar Induction for Structured Activity Recognition","authors":"Huan-Kai Peng, Pang Wu, Jiang Zhu, J. Zhang","doi":"10.1109/ICDM.2011.74","DOIUrl":null,"url":null,"abstract":"The omnipresence of mobile sensors has brought tremendous opportunities to ubiquitous computing systems. In many natural settings, however, their broader applications are hindered by three main challenges: rarity of labels, uncertainty of activity granularities, and the difficulty of multi-dimensional sensor fusion. In this paper, we propose building a grammar to address all these challenges using a language-based approach. The proposed algorithm, called Helix, first generates an initial vocabulary using unlabeled sensor readings, followed by iteratively combining statistically collocated sub-activities across sensor dimensions and grouping similar activities together to discover higher level activities. The experiments using a 20-minute ping-pong game demonstrate favorable results compared to a Hierarchical Hidden Markov Model (HHMM) baseline. Closer investigations to the learned grammar also shows that the learned grammar captures the natural structure of the underlying activities.","PeriodicalId":106216,"journal":{"name":"2011 IEEE 11th International Conference on Data Mining","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 11th International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2011.74","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
The omnipresence of mobile sensors has brought tremendous opportunities to ubiquitous computing systems. In many natural settings, however, their broader applications are hindered by three main challenges: rarity of labels, uncertainty of activity granularities, and the difficulty of multi-dimensional sensor fusion. In this paper, we propose building a grammar to address all these challenges using a language-based approach. The proposed algorithm, called Helix, first generates an initial vocabulary using unlabeled sensor readings, followed by iteratively combining statistically collocated sub-activities across sensor dimensions and grouping similar activities together to discover higher level activities. The experiments using a 20-minute ping-pong game demonstrate favorable results compared to a Hierarchical Hidden Markov Model (HHMM) baseline. Closer investigations to the learned grammar also shows that the learned grammar captures the natural structure of the underlying activities.