Adaptive estimation of parameters using partial information of desired outputs

J. Joseph, K. Hari
{"title":"Adaptive estimation of parameters using partial information of desired outputs","authors":"J. Joseph, K. Hari","doi":"10.1109/TENCON.2003.1273438","DOIUrl":null,"url":null,"abstract":"A general framework for forming an adaptive algorithm for problems where only partial information about the desired output is available, is proposed. Based on preliminary analysis it can be shown that this framework can be used to efficiently choose deep, narrow minima when there are many local minima. For problems like separation of instantaneous mixtures (independent component analysis, ICA) and separation of convolutive mixtures when cast in the proposed framework is shown to give the same efficient algorithms as those available in the literature.","PeriodicalId":405847,"journal":{"name":"TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2003.1273438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A general framework for forming an adaptive algorithm for problems where only partial information about the desired output is available, is proposed. Based on preliminary analysis it can be shown that this framework can be used to efficiently choose deep, narrow minima when there are many local minima. For problems like separation of instantaneous mixtures (independent component analysis, ICA) and separation of convolutive mixtures when cast in the proposed framework is shown to give the same efficient algorithms as those available in the literature.
利用期望输出的部分信息自适应估计参数
对于只有部分期望输出信息可用的问题,提出了形成自适应算法的一般框架。初步分析表明,在局部极小值较多的情况下,该框架可以有效地选择深、窄极小值。对于瞬时混合物的分离(独立分量分析,ICA)和卷积混合物的分离等问题,所提出的框架显示出与文献中可用的算法相同的高效算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信