A 6T-SRAM-Based Computing-In-Memory Architecture using 22nm FD-SOI Device

S. Liu, J. J. Wang, Y. Liu, L. Cao, Y. Liu
{"title":"A 6T-SRAM-Based Computing-In-Memory Architecture using 22nm FD-SOI Device","authors":"S. Liu, J. J. Wang, Y. Liu, L. Cao, Y. Liu","doi":"10.1109/ICSTSN57873.2023.10151524","DOIUrl":null,"url":null,"abstract":"A computing in-memory architecture based on 22nm Fully Depleted Silicon On Insulator (FD-SOI) device is presented. By using FD-SOI devices, logic operations such as “and” “nor” or “ x “ Access Memory (SRAM) through the effect of body biasing in the $22\\mathrm{~nm}$ FD-SOI technology. The proposed architecture contains six modules: the SRAM-based Computing InMemory module, the Data Buffer module, the Pulse Generation module, the pre-charge module, AdditionActivation-Binarization module and the System Controller module. Complex ADC and DAC circuits are not involved in this design. Thereby, by using the FD-SOI devices, the convolution or dot product operations can be realized, which are always used in artificial intelligence (AI) algorithms in a very efficient way. A Binary Multi-Layer Perception (BMLP) is mapped to examine the design. Simulations shows that our design achieves 94% accuracy in the MNIST digit recognition task. And the energy efficiency is 73.03 TOPS/W, which is far beyond traditional AI accelerators and provides an efficient path for massive computing in-memory operation.","PeriodicalId":325019,"journal":{"name":"2023 2nd International Conference on Smart Technologies and Systems for Next Generation Computing (ICSTSN)","volume":"62 43","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 2nd International Conference on Smart Technologies and Systems for Next Generation Computing (ICSTSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSTSN57873.2023.10151524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A computing in-memory architecture based on 22nm Fully Depleted Silicon On Insulator (FD-SOI) device is presented. By using FD-SOI devices, logic operations such as “and” “nor” or “ x “ Access Memory (SRAM) through the effect of body biasing in the $22\mathrm{~nm}$ FD-SOI technology. The proposed architecture contains six modules: the SRAM-based Computing InMemory module, the Data Buffer module, the Pulse Generation module, the pre-charge module, AdditionActivation-Binarization module and the System Controller module. Complex ADC and DAC circuits are not involved in this design. Thereby, by using the FD-SOI devices, the convolution or dot product operations can be realized, which are always used in artificial intelligence (AI) algorithms in a very efficient way. A Binary Multi-Layer Perception (BMLP) is mapped to examine the design. Simulations shows that our design achieves 94% accuracy in the MNIST digit recognition task. And the energy efficiency is 73.03 TOPS/W, which is far beyond traditional AI accelerators and provides an efficient path for massive computing in-memory operation.
基于22纳米FD-SOI器件的6t - sram内存计算架构
提出了一种基于22nm全耗尽绝缘体上硅(FD-SOI)器件的内存计算架构。通过使用FD-SOI器件,逻辑运算如“和”、“或”或“x”等通过体偏置效应访问存储器(SRAM)的FD-SOI技术实现了22\mathrm{~nm}$ FD-SOI技术。提出的架构包含六个模块:基于sram的内存计算模块、数据缓冲模块、脉冲生成模块、预充电模块、附加激活-二值化模块和系统控制器模块。本设计不涉及复杂的ADC和DAC电路。因此,通过FD-SOI器件,可以实现卷积或点积运算,这是人工智能(AI)算法中经常使用的一种非常有效的方法。一个二元多层感知(BMLP)被映射来检查设计。仿真结果表明,我们的设计在MNIST数字识别任务中达到了94%的准确率。能效高达73.03 TOPS/W,远超传统AI加速器,为海量内存运算提供了高效路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信