A remark on the intersection of plane curves

C. Ciliberto, F. Flamini, M. Zaidenberg
{"title":"A remark on the intersection of plane\n curves","authors":"C. Ciliberto, F. Flamini, M. Zaidenberg","doi":"10.1090/CONM/733/14737","DOIUrl":null,"url":null,"abstract":"Let $D$ be a very general curve of degree $d=2\\ell-\\epsilon$ in $\\mathbb{P}^2$, with $\\epsilon\\in \\{0,1\\}$. Let $\\Gamma \\subset \\mathbb{P}^2$ be an integral curve of geometric genus $g$ and degree $m$, $\\Gamma \\neq D$, and let $\\nu: C\\to \\Gamma$ be the normalization. Let $\\delta$ be the degree of the \\emph{reduction modulo 2} of the divisor $\\nu^*(D)$ of $C$. In this paper we prove the inequality $4g+\\delta\\geqslant m(d-8+2\\epsilon)+5$. We compare this with similar inequalities due to Geng Xu and Xi Chen. Besides, we provide a brief account on genera of subvarieties in projective hypersurfaces.","PeriodicalId":432671,"journal":{"name":"Functional Analysis and Geometry","volume":"29 56","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Analysis and Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/CONM/733/14737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Let $D$ be a very general curve of degree $d=2\ell-\epsilon$ in $\mathbb{P}^2$, with $\epsilon\in \{0,1\}$. Let $\Gamma \subset \mathbb{P}^2$ be an integral curve of geometric genus $g$ and degree $m$, $\Gamma \neq D$, and let $\nu: C\to \Gamma$ be the normalization. Let $\delta$ be the degree of the \emph{reduction modulo 2} of the divisor $\nu^*(D)$ of $C$. In this paper we prove the inequality $4g+\delta\geqslant m(d-8+2\epsilon)+5$. We compare this with similar inequalities due to Geng Xu and Xi Chen. Besides, we provide a brief account on genera of subvarieties in projective hypersurfaces.
关于平面曲线相交的注解
设$D$为$\mathbb{P}^2$中一个非常一般的度曲线$d=2\ell-\epsilon$,与$\epsilon\in \{0,1\}$。设$\Gamma \subset \mathbb{P}^2$为几何属$g$和次$m$, $\Gamma \neq D$的积分曲线,设$\nu: C\to \Gamma$为归一化曲线。设$\delta$为$C$的除数$\nu^*(D)$的\emph{约简模2}的阶数。本文证明了不等式$4g+\delta\geqslant m(d-8+2\epsilon)+5$。我们将此与耿旭和陈曦的类似不平等进行比较。此外,我们还简要介绍了射影超曲面的亚种属。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信