Enabling the fault tolerant operation of shipboard microgrid architecture

Pinjala Mohana Kishore, R. Bhimasingu
{"title":"Enabling the fault tolerant operation of shipboard microgrid architecture","authors":"Pinjala Mohana Kishore, R. Bhimasingu","doi":"10.1109/SGBC.2016.7935993","DOIUrl":null,"url":null,"abstract":"Generally, in MVDC shipboard micogrid system, all the loads, and sources are connected to centralized MVDC bus through suitable power electronic converters. These power electronic converters are of two port structure and are used to control the parameters of MVDC bus, source, and load. If any fault occurs on source/sink connection or MVDC bus, results in the isolation of source/sink from the MVDC bus or total shutdown of the MVDC system. This decreases the performance of the shipboard sub-systems. For providing the uninterrupted power supply problem during faults, this paper presents a new fault tolerant two layer shipboard microgrid architecture for next generation electric ships. This two layered microgrid architecture has one MVDC bus and one MVAC bus, which are connected through interlinking converter. And, all the electrical equipment (sources/sinks) are connected to both MVDC/MVAC buses through a three port converter (TPC). In normal operation of TPC, sources/sinks are connected to its respective bus. And, if any fault will occur on any of the buses, TPC shifts its source/sink of the faulted bus to un-faulted bus. The fault tolerant two layer microgrid system was simulated using MATLAB/Simulink. The comparative results shows the effectiveness of the proposed architecture.","PeriodicalId":339120,"journal":{"name":"2016 First International Conference on Sustainable Green Buildings and Communities (SGBC)","volume":"353 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 First International Conference on Sustainable Green Buildings and Communities (SGBC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SGBC.2016.7935993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Generally, in MVDC shipboard micogrid system, all the loads, and sources are connected to centralized MVDC bus through suitable power electronic converters. These power electronic converters are of two port structure and are used to control the parameters of MVDC bus, source, and load. If any fault occurs on source/sink connection or MVDC bus, results in the isolation of source/sink from the MVDC bus or total shutdown of the MVDC system. This decreases the performance of the shipboard sub-systems. For providing the uninterrupted power supply problem during faults, this paper presents a new fault tolerant two layer shipboard microgrid architecture for next generation electric ships. This two layered microgrid architecture has one MVDC bus and one MVAC bus, which are connected through interlinking converter. And, all the electrical equipment (sources/sinks) are connected to both MVDC/MVAC buses through a three port converter (TPC). In normal operation of TPC, sources/sinks are connected to its respective bus. And, if any fault will occur on any of the buses, TPC shifts its source/sink of the faulted bus to un-faulted bus. The fault tolerant two layer microgrid system was simulated using MATLAB/Simulink. The comparative results shows the effectiveness of the proposed architecture.
实现舰载微电网架构的容错运行
在MVDC船载微网系统中,所有负载和电源通过合适的电力电子变流器连接到集中的MVDC母线上。这些电力电子变换器采用双端口结构,用于控制直流母线、电源和负载的参数。如果源汇连接或MVDC总线出现故障,将导致源汇与MVDC总线隔离或MVDC系统完全关闭。这降低了舰载子系统的性能。为解决船舶故障时的不间断供电问题,提出了一种新的两层容错船载微电网结构。该两层微电网结构有一个MVDC总线和一个MVAC总线,它们通过互连转换器连接。并且,所有电气设备(源/汇)都通过三端口转换器(TPC)连接到MVDC/MVAC总线。在TPC的正常运行中,源/汇连接到各自的总线上。而且,如果在任何总线上发生任何故障,TPC将其故障总线的源/接收器转移到非故障总线。利用MATLAB/Simulink对两层容错微电网系统进行了仿真。对比结果表明了该结构的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信