Speed Estimation of Video Target Based on Siamese Convolutional Network and Kalman Filtering

Chunsheng Zhao, Xiukun Wei, Jing Li
{"title":"Speed Estimation of Video Target Based on Siamese Convolutional Network and Kalman Filtering","authors":"Chunsheng Zhao, Xiukun Wei, Jing Li","doi":"10.1109/icaci55529.2022.9837611","DOIUrl":null,"url":null,"abstract":"In recent years, computer vision-based moving target state detection and motion parameter estimation have become a hot topic. Aiming at the problem that the accurate speed of moving target cannot be calculated from the target tracking results, in this paper, a speed estimation method using Siamese convolutional network and Kalman filtering is proposed and it is validated by single pendulum experimental data. Firstly, an improved Siamese convolutional network is integrated to detect the position of a moving ball in the single pendulum video. Then, these position coordinates are integrated to estimate the speed of the moving ball by using the information from the previous and current frame through a Kalman filter. The experimental results show that this method can achieve a sound on the speed estimation of moving objects in videos.","PeriodicalId":412347,"journal":{"name":"2022 14th International Conference on Advanced Computational Intelligence (ICACI)","volume":"35 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icaci55529.2022.9837611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, computer vision-based moving target state detection and motion parameter estimation have become a hot topic. Aiming at the problem that the accurate speed of moving target cannot be calculated from the target tracking results, in this paper, a speed estimation method using Siamese convolutional network and Kalman filtering is proposed and it is validated by single pendulum experimental data. Firstly, an improved Siamese convolutional network is integrated to detect the position of a moving ball in the single pendulum video. Then, these position coordinates are integrated to estimate the speed of the moving ball by using the information from the previous and current frame through a Kalman filter. The experimental results show that this method can achieve a sound on the speed estimation of moving objects in videos.
基于Siamese卷积网络和卡尔曼滤波的视频目标速度估计
近年来,基于计算机视觉的运动目标状态检测和运动参数估计已成为研究的热点。针对目标跟踪结果无法准确计算运动目标速度的问题,提出了一种基于Siamese卷积网络和卡尔曼滤波的运动目标速度估计方法,并通过单摆实验数据进行了验证。首先,利用改进的Siamese卷积网络检测单摆视频中运动球的位置;然后,利用前一帧和当前帧的信息,通过卡尔曼滤波对这些位置坐标进行积分,估计出运动球的速度。实验结果表明,该方法可以实现对视频中运动物体的声音速度估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信