Optimal Location and Sizing of SVC Using Particle Swarm Optimization Technique

S. A. Jumaat, I. Musirin, Muhammad Mutadha Othman, H. Mokhlis
{"title":"Optimal Location and Sizing of SVC Using Particle Swarm Optimization Technique","authors":"S. A. Jumaat, I. Musirin, Muhammad Mutadha Othman, H. Mokhlis","doi":"10.1109/ICI.2011.58","DOIUrl":null,"url":null,"abstract":"This paper describes optimal location and sizing of static var compensator (SVC) based on Particle Swarm Optimization for minimization of transmission losses considering cost function. Particle Swarm Optimization (PSO) is population-based stochastic search algorithms approaches as the potential techniques to solving such a problem. For this study, static var compensator (SVC) is chosen as the compensation device. Validation through the implementation on the IEEE 30-bus system indicated that PSO is feasible to achieve the task. The simulation results are compared with those obtained from Evolutionary Programming (EP) technique in the attempt to highlight its merit.","PeriodicalId":146712,"journal":{"name":"2011 First International Conference on Informatics and Computational Intelligence","volume":"17 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 First International Conference on Informatics and Computational Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICI.2011.58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

This paper describes optimal location and sizing of static var compensator (SVC) based on Particle Swarm Optimization for minimization of transmission losses considering cost function. Particle Swarm Optimization (PSO) is population-based stochastic search algorithms approaches as the potential techniques to solving such a problem. For this study, static var compensator (SVC) is chosen as the compensation device. Validation through the implementation on the IEEE 30-bus system indicated that PSO is feasible to achieve the task. The simulation results are compared with those obtained from Evolutionary Programming (EP) technique in the attempt to highlight its merit.
基于粒子群优化技术的SVC定位与尺寸优化
基于粒子群算法的静态无功补偿器(SVC)在考虑代价函数的情况下,最大限度地降低传输损失。粒子群优化(PSO)是一种基于种群的随机搜索算法,是解决这一问题的潜在技术。本文选择静态无功补偿器(SVC)作为补偿装置。通过在IEEE 30总线系统上的实现验证,表明粒子群算法是可行的。将仿真结果与进化规划(EP)方法的仿真结果进行了比较,以突出其优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信