{"title":"Parallel multiplier designs utilizing a non-binary logic scheme","authors":"R. Lin","doi":"10.1109/EURMIC.2000.874531","DOIUrl":null,"url":null,"abstract":"The paper presents a novel approach for CMOS low-power, high performance parallel multiplier design, utilizing a recently proposed non-binary shift switch logic scheme. Compared with the existing well-known parallel multiplier designs, the new approach requires fewer partial product bit reduction stages, and improves performance in speed, VLSI area as well as power dissipation. SPICE simulations with a 0.25 micron, 2.5 volt supply process on critical paths have demonstrated the superiority of the approach.","PeriodicalId":138250,"journal":{"name":"Proceedings of the 26th Euromicro Conference. EUROMICRO 2000. Informatics: Inventing the Future","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th Euromicro Conference. EUROMICRO 2000. Informatics: Inventing the Future","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EURMIC.2000.874531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The paper presents a novel approach for CMOS low-power, high performance parallel multiplier design, utilizing a recently proposed non-binary shift switch logic scheme. Compared with the existing well-known parallel multiplier designs, the new approach requires fewer partial product bit reduction stages, and improves performance in speed, VLSI area as well as power dissipation. SPICE simulations with a 0.25 micron, 2.5 volt supply process on critical paths have demonstrated the superiority of the approach.