A Maximal Clique Enumeration Based on Ordered Star Neighborhood for Co-location Patterns

Yang Cheng, Zhang Tianjun, Luo Junli
{"title":"A Maximal Clique Enumeration Based on Ordered Star Neighborhood for Co-location Patterns","authors":"Yang Cheng, Zhang Tianjun, Luo Junli","doi":"10.1109/IHMSC.2013.46","DOIUrl":null,"url":null,"abstract":"A co-location pattern is a group of spatial features/events that are frequently co-located in the same region. Even though Boolean spatial feature types(or spatial events) may correspond to items in association rules over market-basket datasets, there is no natural notion of transactions. Methods proposed for transactional data mining cannot be directly applied on spatial boolean data. Previous studies have to propose new notions in place of transactions and use corresponding measures and methods to mine co-location patterns. In this paper, we propose a maximal clique enumeration Based on ordered star neighborhood(MCEBOSON) algorithm to enable the transactionalization of spatial boolean data, which makes the application of classic efficient methods on general data mining possible. The experimental results show that the MCEBOSON algorithm successfully generates all maximal cliques in the synthetic dataset and performs better than the join-Based algorithm.","PeriodicalId":222375,"journal":{"name":"2013 5th International Conference on Intelligent Human-Machine Systems and Cybernetics","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 5th International Conference on Intelligent Human-Machine Systems and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IHMSC.2013.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A co-location pattern is a group of spatial features/events that are frequently co-located in the same region. Even though Boolean spatial feature types(or spatial events) may correspond to items in association rules over market-basket datasets, there is no natural notion of transactions. Methods proposed for transactional data mining cannot be directly applied on spatial boolean data. Previous studies have to propose new notions in place of transactions and use corresponding measures and methods to mine co-location patterns. In this paper, we propose a maximal clique enumeration Based on ordered star neighborhood(MCEBOSON) algorithm to enable the transactionalization of spatial boolean data, which makes the application of classic efficient methods on general data mining possible. The experimental results show that the MCEBOSON algorithm successfully generates all maximal cliques in the synthetic dataset and performs better than the join-Based algorithm.
一种基于有序星邻域的共定位模式最大团枚举
同位模式是一组空间特征/事件,它们经常同位在同一区域。尽管布尔空间特征类型(或空间事件)可能对应于市场篮数据集上关联规则中的项,但是没有自然的事务概念。提出的事务性数据挖掘方法不能直接应用于空间布尔数据。以往的研究必须提出新的概念来代替交易,并使用相应的措施和方法来挖掘共址模式。本文提出了一种基于有序星邻域的最大团枚举(MCEBOSON)算法,实现了空间布尔数据的事务化处理,使经典高效方法在一般数据挖掘中的应用成为可能。实验结果表明,MCEBOSON算法成功地生成了合成数据集中的所有最大团,性能优于基于join的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信