Lossless Data Compression via Substring Enumeration for k-th Order Markov Sources with a Finite Alphabet

K. Iwata, M. Arimura
{"title":"Lossless Data Compression via Substring Enumeration for k-th Order Markov Sources with a Finite Alphabet","authors":"K. Iwata, M. Arimura","doi":"10.1109/DCC.2015.51","DOIUrl":null,"url":null,"abstract":"Dube and Beaudoin have proposed a technique of lossless data compression called compression via substring enumeration (CSE) for a binary source alphabet. Dube and Yokoo proved that CSE has a linear complexity both in time and in space worst-case performance for the length of string to be encoded. Dubé and Yokoo have specified appropriate predictors of the uniform and combinatorial prediction models for CSE, and proved that CSE has the asymptotic optimality for stationary binary ergodic sources. Our previous study evaluated the worst-case maximum redundancy of the modified CSE for an arbitrary binary string from the class of k-th order Markov sources. We propose a generalization of CSE for k-th order Markov sources with a finite alphabet X based on Ota and Morita in this study.","PeriodicalId":313156,"journal":{"name":"2015 Data Compression Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2015.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Dube and Beaudoin have proposed a technique of lossless data compression called compression via substring enumeration (CSE) for a binary source alphabet. Dube and Yokoo proved that CSE has a linear complexity both in time and in space worst-case performance for the length of string to be encoded. Dubé and Yokoo have specified appropriate predictors of the uniform and combinatorial prediction models for CSE, and proved that CSE has the asymptotic optimality for stationary binary ergodic sources. Our previous study evaluated the worst-case maximum redundancy of the modified CSE for an arbitrary binary string from the class of k-th order Markov sources. We propose a generalization of CSE for k-th order Markov sources with a finite alphabet X based on Ota and Morita in this study.
基于子串枚举的有限字母k阶马尔可夫源无损数据压缩
Dube和Beaudoin提出了一种无损数据压缩技术,称为通过子串枚举(CSE)对二进制源字母表进行压缩。Dube和Yokoo证明了CSE在时间和空间的最坏情况下对要编码的字符串长度具有线性复杂度。dub和Yokoo给出了CSE的均匀预测模型和组合预测模型的适当预测量,并证明了CSE对平稳二元遍历源具有渐近最优性。我们之前的研究评估了k阶马尔可夫源中任意二进制字符串的改进CSE的最坏情况最大冗余。本文在Ota和Morita的基础上,对有限字母X的k阶马尔可夫源的CSE进行了推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信