Incorporating Option and Out-of-domain Knowledge for Multi-choice Machine Reading Comprehension

Yuan Xu, Shumin Shi, Heyan Huang
{"title":"Incorporating Option and Out-of-domain Knowledge for Multi-choice Machine Reading Comprehension","authors":"Yuan Xu, Shumin Shi, Heyan Huang","doi":"10.1109/CCIS53392.2021.9754687","DOIUrl":null,"url":null,"abstract":"Multi-choice Machine Reading Comprehension (MRC) requires the model to select the correct answer from a set of answer candidates given the corresponding passage and question. Previous studies mainly focus on complex matching networks to model the relationship among options, passage and question. However, these models obtain little improvement over the powerful Pre-trained Language Models (PLMs). In this paper, we propose a simple method to incorporate option knowledge from PLMs and introduce out-of-domain knowledge by multi-task learning skillfully. Our approach obtains state-of-the-art results on Chinese multi-choice MRC dataset ReCO and also effectively improves the performance on C3.","PeriodicalId":191226,"journal":{"name":"2021 IEEE 7th International Conference on Cloud Computing and Intelligent Systems (CCIS)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 7th International Conference on Cloud Computing and Intelligent Systems (CCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCIS53392.2021.9754687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-choice Machine Reading Comprehension (MRC) requires the model to select the correct answer from a set of answer candidates given the corresponding passage and question. Previous studies mainly focus on complex matching networks to model the relationship among options, passage and question. However, these models obtain little improvement over the powerful Pre-trained Language Models (PLMs). In this paper, we propose a simple method to incorporate option knowledge from PLMs and introduce out-of-domain knowledge by multi-task learning skillfully. Our approach obtains state-of-the-art results on Chinese multi-choice MRC dataset ReCO and also effectively improves the performance on C3.
多选题机器阅读理解的选择与领域外知识融合
多选择机器阅读理解(MRC)要求该模型从给定相应段落和问题的一组答案候选人中选择正确答案。以往的研究主要集中在复杂的匹配网络上,以模拟选项、段落和问题之间的关系。然而,与功能强大的预训练语言模型(plm)相比,这些模型得到的改进很少。本文提出了一种简单的方法,通过多任务学习巧妙地吸收PLMs中的期权知识,并引入域外知识。我们的方法在中文多选题MRC数据集ReCO上获得了最先进的结果,并有效地提高了C3上的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信