F. Banterle, R. Gong, M. Corsini, F. Ganovelli, L. Gool, Paolo Cignoni
{"title":"A Deep Learning Method for Frame Selection in Videos for Structure from Motion Pipelines","authors":"F. Banterle, R. Gong, M. Corsini, F. Ganovelli, L. Gool, Paolo Cignoni","doi":"10.1109/ICIP42928.2021.9506227","DOIUrl":null,"url":null,"abstract":"Structure-from-Motion (SfM) using the frames of a video sequence can be a challenging task because there is a lot of redundant information, the computational time increases quadratically with the number of frames, there would be low-quality images (e.g., blurred frames) that can decrease the final quality of the reconstruction, etc. To overcome all these issues, we present a novel deep-learning architecture that is meant for speeding up SfM by selecting frames using predicted sub-sampling frequency. This architecture is general and can learn/distill the knowledge of any algorithm for selecting frames from a video for generating high-quality reconstructions. One key advantage is that we can run our architecture in real-time saving computations while keeping high-quality results.","PeriodicalId":314429,"journal":{"name":"2021 IEEE International Conference on Image Processing (ICIP)","volume":"574 7776 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP42928.2021.9506227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Structure-from-Motion (SfM) using the frames of a video sequence can be a challenging task because there is a lot of redundant information, the computational time increases quadratically with the number of frames, there would be low-quality images (e.g., blurred frames) that can decrease the final quality of the reconstruction, etc. To overcome all these issues, we present a novel deep-learning architecture that is meant for speeding up SfM by selecting frames using predicted sub-sampling frequency. This architecture is general and can learn/distill the knowledge of any algorithm for selecting frames from a video for generating high-quality reconstructions. One key advantage is that we can run our architecture in real-time saving computations while keeping high-quality results.