Index theory for manifolds with Baas-Sullivan singularities

R. Deeley
{"title":"Index theory for manifolds with Baas-Sullivan singularities","authors":"R. Deeley","doi":"10.4171/JNCG/269","DOIUrl":null,"url":null,"abstract":"We study index theory for manifolds with Baas-Sullivan singularities using geometric K-homology with coefficients in a unital C*-algebra. In particular, we define a natural analog of the Baum-Connes assembly map for a torsion-free discrete group in the context of these singular spaces. The cases of singularities modelled on k-points (i.e., z/k-manifolds) and the circle are discussed in detail. In the case of the former, the associated index theorem is related to the Freed-Melrose index theorem; in the case of latter, the index theorem is related to work of Rosenberg.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/JNCG/269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study index theory for manifolds with Baas-Sullivan singularities using geometric K-homology with coefficients in a unital C*-algebra. In particular, we define a natural analog of the Baum-Connes assembly map for a torsion-free discrete group in the context of these singular spaces. The cases of singularities modelled on k-points (i.e., z/k-manifolds) and the circle are discussed in detail. In the case of the former, the associated index theorem is related to the Freed-Melrose index theorem; in the case of latter, the index theorem is related to work of Rosenberg.
具有Baas-Sullivan奇点流形的指标理论
利用一元C*-代数中带系数的几何k -同调研究了具有Baas-Sullivan奇点的流形的指标理论。特别地,我们定义了这些奇异空间中无扭转离散群的Baum-Connes集合映射的自然类比。详细讨论了在k点(即z/k流形)和圆上建模的奇点情况。在前者的情况下,关联指标定理与Freed-Melrose指标定理相关;对于后者,指标定理与Rosenberg的工作有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信