On probabilistic analysis of randomization in hybrid symbolic-numeric algorithms

E. Kaltofen, Zhengfeng Yang, L. Zhi
{"title":"On probabilistic analysis of randomization in hybrid symbolic-numeric algorithms","authors":"E. Kaltofen, Zhengfeng Yang, L. Zhi","doi":"10.1145/1277500.1277503","DOIUrl":null,"url":null,"abstract":"Algebraic randomization techniques can be applied to hybrid symbolic-numeric algorithms. Here we consider the problem of interpolating a sparse rational function from noisy values. We develop a new hybrid algorithm based on Zippel's original sparse polynomial interpolation technique. We show experimentally that our algorithm can handle sparse polynomials with large degrees. We also give a (partial) mathematical justification why the Zippel's algebraic randomization technique can be used with our approximate data: the randomly generated non-zero values are expected to be bounded away from zero. We show that the random Fourier-like matrices arising in our algorithm, have the desired rank property in the exact case, and appear usable numerically.\n Algebraic randomization techniques can be applied to hybrid symbolic-numeric algorithms. Here we consider the problem of interpolating a sparse rational function from noisy values. We develop a new hybrid algorithm based on Zippel's original sparse polynomial interpolation technique. We show experimentally that our algorithm can handle sparse polynomials with large degrees. We also give a (partial) mathematical justification why the Zippel's algebraic randomization technique can be used with our approximate data: the randomly generated non-zero values are expected to be bounded away from zero. We show that the random Fourier-like matrices arising in our algorithm, have the desired rank property in the exact case, and appear usable numerically.","PeriodicalId":308716,"journal":{"name":"Symbolic-Numeric Computation","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symbolic-Numeric Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1277500.1277503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

Algebraic randomization techniques can be applied to hybrid symbolic-numeric algorithms. Here we consider the problem of interpolating a sparse rational function from noisy values. We develop a new hybrid algorithm based on Zippel's original sparse polynomial interpolation technique. We show experimentally that our algorithm can handle sparse polynomials with large degrees. We also give a (partial) mathematical justification why the Zippel's algebraic randomization technique can be used with our approximate data: the randomly generated non-zero values are expected to be bounded away from zero. We show that the random Fourier-like matrices arising in our algorithm, have the desired rank property in the exact case, and appear usable numerically. Algebraic randomization techniques can be applied to hybrid symbolic-numeric algorithms. Here we consider the problem of interpolating a sparse rational function from noisy values. We develop a new hybrid algorithm based on Zippel's original sparse polynomial interpolation technique. We show experimentally that our algorithm can handle sparse polynomials with large degrees. We also give a (partial) mathematical justification why the Zippel's algebraic randomization technique can be used with our approximate data: the randomly generated non-zero values are expected to be bounded away from zero. We show that the random Fourier-like matrices arising in our algorithm, have the desired rank property in the exact case, and appear usable numerically.
符号-数值混合算法随机化的概率分析
代数随机化技术可以应用于符号-数值混合算法。这里我们考虑从噪声值插值稀疏有理函数的问题。在Zippel原始稀疏多项式插值技术的基础上,提出了一种新的混合插值算法。实验表明,该算法可以处理大阶的稀疏多项式。我们还给出了Zippel代数随机化技术可以用于我们的近似数据的(部分)数学理由:随机生成的非零值预计将远离零。我们证明了在我们的算法中产生的随机类傅里叶矩阵,在确切的情况下具有期望的秩性质,并且在数值上是可用的。代数随机化技术可以应用于符号-数值混合算法。这里我们考虑从噪声值插值稀疏有理函数的问题。在Zippel原始稀疏多项式插值技术的基础上,提出了一种新的混合插值算法。实验表明,该算法可以处理大阶的稀疏多项式。我们还给出了Zippel代数随机化技术可以用于我们的近似数据的(部分)数学理由:随机生成的非零值预计将远离零。我们证明了在我们的算法中产生的随机类傅里叶矩阵,在确切的情况下具有期望的秩性质,并且在数值上是可用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信