Remaining Useful Life Prediction on C-MAPSS Dataset via Joint Autoencoder-Regression Architecture

Kürsat Ince, Uğur Ceylan, Yakup Genç
{"title":"Remaining Useful Life Prediction on C-MAPSS Dataset via Joint Autoencoder-Regression Architecture","authors":"Kürsat Ince, Uğur Ceylan, Yakup Genç","doi":"10.1109/SIU55565.2022.9864796","DOIUrl":null,"url":null,"abstract":"The maintenance costs of industrial systems often exceed the initial investment cost. Predictive maintenance, one of the most effective methods in reducing overall maintenance costs, has become an area of interest for data-driven researchers after the increasing automation, monitoring capabilities and development techniques introduced with the new industrial revolution. In this study we introduce joint autoencoder-regression architecture for remaining useful life prediction, and demonstrate it on the NASA Turbofan Engine Degredation Dataset. The architecture incorporates InceptionTime networks for the autoencoder and short-long-term memory for the remaining useful life prediction. In the first stage, the models are trained and optimized using genetic algorithms, and then the models are fine-tuned with noise inducing and network pruning techniques. The results show that InceptionTime network-based joint autocode-regression architecture is competitive with the recent studies on the dataset, and that noise induced models show performance close to the state-of-the-art models.","PeriodicalId":115446,"journal":{"name":"2022 30th Signal Processing and Communications Applications Conference (SIU)","volume":"188 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU55565.2022.9864796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The maintenance costs of industrial systems often exceed the initial investment cost. Predictive maintenance, one of the most effective methods in reducing overall maintenance costs, has become an area of interest for data-driven researchers after the increasing automation, monitoring capabilities and development techniques introduced with the new industrial revolution. In this study we introduce joint autoencoder-regression architecture for remaining useful life prediction, and demonstrate it on the NASA Turbofan Engine Degredation Dataset. The architecture incorporates InceptionTime networks for the autoencoder and short-long-term memory for the remaining useful life prediction. In the first stage, the models are trained and optimized using genetic algorithms, and then the models are fine-tuned with noise inducing and network pruning techniques. The results show that InceptionTime network-based joint autocode-regression architecture is competitive with the recent studies on the dataset, and that noise induced models show performance close to the state-of-the-art models.
基于联合自编码器-回归架构的C-MAPSS数据集剩余使用寿命预测
工业系统的维护成本往往超过最初的投资成本。预测性维护是降低整体维护成本的最有效方法之一,随着新工业革命带来的自动化、监控能力和开发技术的不断提高,预测性维护已成为数据驱动研究人员感兴趣的领域。在本研究中,我们引入了用于剩余使用寿命预测的联合自编码器-回归架构,并在NASA涡扇发动机退化数据集上进行了演示。该体系结构结合了用于自动编码器的InceptionTime网络和用于剩余使用寿命预测的长短期记忆。首先利用遗传算法对模型进行训练和优化,然后利用噪声诱导和网络修剪技术对模型进行微调。结果表明,基于InceptionTime网络的联合自动代码回归架构与最近在数据集上的研究具有竞争力,并且噪声诱导模型的性能接近最先进的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信