Optimizing energy to minimize errors in dataflow graphs using approximate adders

Z. Kedem, V. Mooney, Kirthi Krishna Muntimadugu, K. Palem, Avani Devarasetty, Phani Deepak Parasuramuni
{"title":"Optimizing energy to minimize errors in dataflow graphs using approximate adders","authors":"Z. Kedem, V. Mooney, Kirthi Krishna Muntimadugu, K. Palem, Avani Devarasetty, Phani Deepak Parasuramuni","doi":"10.1145/1878921.1878948","DOIUrl":null,"url":null,"abstract":"Approximate arithmetic is a promising, new approach to low-energy designs while tackling reliability issues. We present a method to optimally distribute a given energy budget among adders in a dataflow graph so as to minimize expected errors. The method is based on new formal mathematical models and algorithms, which quantitatively characterize the relative importance of the adders in a circuit. We demonstrate this method on a finite impulse response filter and a Fast Fourier Transform. The optimized energy distribution yields 2.05X lower error in a 16-point FFT and images with SNR 1.42X higher than those achieved by the best previous approach.","PeriodicalId":136293,"journal":{"name":"International Conference on Compilers, Architecture, and Synthesis for Embedded Systems","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Compilers, Architecture, and Synthesis for Embedded Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1878921.1878948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Approximate arithmetic is a promising, new approach to low-energy designs while tackling reliability issues. We present a method to optimally distribute a given energy budget among adders in a dataflow graph so as to minimize expected errors. The method is based on new formal mathematical models and algorithms, which quantitatively characterize the relative importance of the adders in a circuit. We demonstrate this method on a finite impulse response filter and a Fast Fourier Transform. The optimized energy distribution yields 2.05X lower error in a 16-point FFT and images with SNR 1.42X higher than those achieved by the best previous approach.
使用近似加法器优化能量以最小化数据流图中的错误
在解决可靠性问题的同时,近似算法是一种很有前途的低能耗设计新方法。提出了一种在数据流图中对给定的能量预算进行最优分配的方法,以使期望误差最小化。该方法基于新的形式化数学模型和算法,这些模型和算法定量表征了电路中加法器的相对重要性。我们在有限脉冲响应滤波器和快速傅里叶变换上证明了这种方法。优化后的能量分布使16点FFT的误差降低了2.05倍,图像的信噪比提高了1.42倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信