Inferring, Learning and Modelling Complex Systems with Bayesian Networks. A Tutorial

Enachescu Denis, Enachescu Cornelia
{"title":"Inferring, Learning and Modelling Complex Systems with Bayesian Networks. A Tutorial","authors":"Enachescu Denis, Enachescu Cornelia","doi":"10.1109/SYNASC.2018.00017","DOIUrl":null,"url":null,"abstract":"Bayesian networks, BN, are a formalism for probabilistic reasoning that have grown increasingly popular for tasks such as classification in data-mining. In some situations, the structure of the Bayesian network can be given by an expert. If not, retrieving it automatically from a database of cases is a NP-hard problem; notably because of the complexity of the search space. In the last decade, numerous methods have been introduced to learn the networks structure automatically, by simplifying the search space or by using a heuristic in the search space. Most methods deal with completely observed data, but some can deal with incomplete data. In this tutorial we will present, besides BN, other popular classification methods, i.e. Multilayer Perceptrons Network (MLP) and K-nearest neighbor (KNN) an analyze their performance in the context of medical diagnosis.","PeriodicalId":273805,"journal":{"name":"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2018.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bayesian networks, BN, are a formalism for probabilistic reasoning that have grown increasingly popular for tasks such as classification in data-mining. In some situations, the structure of the Bayesian network can be given by an expert. If not, retrieving it automatically from a database of cases is a NP-hard problem; notably because of the complexity of the search space. In the last decade, numerous methods have been introduced to learn the networks structure automatically, by simplifying the search space or by using a heuristic in the search space. Most methods deal with completely observed data, but some can deal with incomplete data. In this tutorial we will present, besides BN, other popular classification methods, i.e. Multilayer Perceptrons Network (MLP) and K-nearest neighbor (KNN) an analyze their performance in the context of medical diagnosis.
用贝叶斯网络进行复杂系统的推理、学习和建模。一个教程
贝叶斯网络(BN)是概率推理的一种形式,在数据挖掘中的分类等任务中越来越受欢迎。在某些情况下,贝叶斯网络的结构可以由专家给出。如果没有,从案例数据库中自动检索是一个np困难问题;主要是因为搜索空间的复杂性。在过去的十年中,已经引入了许多方法来自动学习网络结构,通过简化搜索空间或在搜索空间中使用启发式。大多数方法处理完全观察到的数据,但有些方法可以处理不完整的数据。在本教程中,我们将介绍除BN之外的其他流行的分类方法,即多层感知器网络(MLP)和k近邻(KNN),并分析它们在医疗诊断中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信