Robert Lasch, Robert Schulze, T. Legler, K. Sattler
{"title":"Workload-Driven Placement of Column-Store Data Structures on DRAM and NVM","authors":"Robert Lasch, Robert Schulze, T. Legler, K. Sattler","doi":"10.1145/3465998.3466008","DOIUrl":null,"url":null,"abstract":"Non-volatile memory (NVM) offers lower costs per capacity and higher total capacities than DRAM. However, NVM cannot simply be used as a drop-in replacement for DRAM in database management systems due to its different performance characteristics. We thus investigate the placement of column-store data structures in a hybrid hierarchy of DRAM and NVM, with the goal of placing as much data as possible in NVM without compromising performance. After analyzing how different memory access patterns affect query runtimes when columns are placed in NVM, we propose a heuristic that leverages lightweight access counters to suggest which structures should be placed in DRAM and which in NVM. Our evaluation using TPC-H shows that more than 80% of the data touched by queries can be placed in NVM with almost no slowdown, while naively placing all data in NVM would increase runtime by 53%.","PeriodicalId":183683,"journal":{"name":"Proceedings of the 17th International Workshop on Data Management on New Hardware","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 17th International Workshop on Data Management on New Hardware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3465998.3466008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Non-volatile memory (NVM) offers lower costs per capacity and higher total capacities than DRAM. However, NVM cannot simply be used as a drop-in replacement for DRAM in database management systems due to its different performance characteristics. We thus investigate the placement of column-store data structures in a hybrid hierarchy of DRAM and NVM, with the goal of placing as much data as possible in NVM without compromising performance. After analyzing how different memory access patterns affect query runtimes when columns are placed in NVM, we propose a heuristic that leverages lightweight access counters to suggest which structures should be placed in DRAM and which in NVM. Our evaluation using TPC-H shows that more than 80% of the data touched by queries can be placed in NVM with almost no slowdown, while naively placing all data in NVM would increase runtime by 53%.