Parametrization of stochastic load profile modeling approaches for smart grid simulations

Daniel Gross, P. Wiest, K. Rudion, A. Probst
{"title":"Parametrization of stochastic load profile modeling approaches for smart grid simulations","authors":"Daniel Gross, P. Wiest, K. Rudion, A. Probst","doi":"10.1109/ISGTEurope.2017.8260180","DOIUrl":null,"url":null,"abstract":"This paper presents an adaption of stochastic load profile modeling for application in distribution grid simulations. Such load profiles are necessary for network expansion planning as well as for state estimation in case of unavailable measurements. Relevant properties of the synthetic load profiles generated by Markov chain-based approach and a linear regression model will be adapted by a denormalization for using in smart grid simulations. First, a briefly explanation of the used profile modeling approaches will be given and the resulting weak points will be demonstrated. In relation to this, the denormalization process for the adoption of the synthetic profiles will be presented. The validation of the proposed method will be carried out by the comparison of the relevant properties for smart gird simulations before and after the denormalization. The results of this evaluation are contributed to assess potential fields of application of the synthetic profiles presented in this paper.","PeriodicalId":345050,"journal":{"name":"2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGTEurope.2017.8260180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper presents an adaption of stochastic load profile modeling for application in distribution grid simulations. Such load profiles are necessary for network expansion planning as well as for state estimation in case of unavailable measurements. Relevant properties of the synthetic load profiles generated by Markov chain-based approach and a linear regression model will be adapted by a denormalization for using in smart grid simulations. First, a briefly explanation of the used profile modeling approaches will be given and the resulting weak points will be demonstrated. In relation to this, the denormalization process for the adoption of the synthetic profiles will be presented. The validation of the proposed method will be carried out by the comparison of the relevant properties for smart gird simulations before and after the denormalization. The results of this evaluation are contributed to assess potential fields of application of the synthetic profiles presented in this paper.
面向智能电网仿真的随机负荷分布建模方法的参数化
本文介绍了随机负荷分布模型在配电网仿真中的应用。这样的负载概况对于网络扩展规划以及在不可用测量的情况下的状态估计是必要的。基于马尔可夫链的方法和线性回归模型生成的综合负荷分布的相关特性将通过反规范化来适应智能电网仿真。首先,将简要说明所使用的轮廓建模方法,并演示由此产生的弱点。与此相关,将介绍采用合成型材的非正态化过程。通过对反规范化前后智能电网仿真的相关属性进行比较,验证所提方法的有效性。评价结果有助于评价本文提出的合成型材的潜在应用领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信