Data Efficient Learning of Robust Control Policies

Susmit Jha, P. Lincoln
{"title":"Data Efficient Learning of Robust Control Policies","authors":"Susmit Jha, P. Lincoln","doi":"10.1109/ALLERTON.2018.8636072","DOIUrl":null,"url":null,"abstract":"This paper investigates data-efficient methods for learning robust control policies. Reinforcement learning has emerged as an effective approach to learn control policies by interacting directly with the plant, but it requires a significant number of example trajectories to converge to the optimal policy. Combining model-free reinforcement learning with model-based control methods achieves better data-efficiency via simultaneous system identification and controller synthesis. We study a novel approach that exploits the existence of approximate physics models to accelerate the learning of control policies. The proposed approach consists of iterating through three key steps: evaluating a selected policy on the real-world plant and recording trajectories, building a Gaussian process model to predict the reality-gap of a parametric physics model in the neighborhood of the selected policy, and synthesizing a new policy using reinforcement learning on the refined physics model that most likely approximates the real plant. The approach converges to an optimal policy as well as an approximate physics model. The real world experiments are limited to evaluating only promising candidate policies, and the use of Gaussian processes minimizes the number of required real world trajectories. We demonstrate the effectiveness of our techniques on a set of simulation case-studies using OpenAI gym environments.","PeriodicalId":175228,"journal":{"name":"Allerton Conference on Communication, Control, and Computing","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Allerton Conference on Communication, Control, and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2018.8636072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper investigates data-efficient methods for learning robust control policies. Reinforcement learning has emerged as an effective approach to learn control policies by interacting directly with the plant, but it requires a significant number of example trajectories to converge to the optimal policy. Combining model-free reinforcement learning with model-based control methods achieves better data-efficiency via simultaneous system identification and controller synthesis. We study a novel approach that exploits the existence of approximate physics models to accelerate the learning of control policies. The proposed approach consists of iterating through three key steps: evaluating a selected policy on the real-world plant and recording trajectories, building a Gaussian process model to predict the reality-gap of a parametric physics model in the neighborhood of the selected policy, and synthesizing a new policy using reinforcement learning on the refined physics model that most likely approximates the real plant. The approach converges to an optimal policy as well as an approximate physics model. The real world experiments are limited to evaluating only promising candidate policies, and the use of Gaussian processes minimizes the number of required real world trajectories. We demonstrate the effectiveness of our techniques on a set of simulation case-studies using OpenAI gym environments.
鲁棒控制策略的数据高效学习
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信