Sigma-UAP: An Invisible Semi-Universal Adversarial Attack Against Deep Neural Networks

Feiyang Qin, Wenqi Na, Song Gao, Shaowen Yao
{"title":"Sigma-UAP: An Invisible Semi-Universal Adversarial Attack Against Deep Neural Networks","authors":"Feiyang Qin, Wenqi Na, Song Gao, Shaowen Yao","doi":"10.1109/prmvia58252.2023.00012","DOIUrl":null,"url":null,"abstract":"Although deep neural networks (DNNs) have achieved exceptional performance, they are shown to be fragile to universal adversarial perturbations (UAP), which can be applied to any images to fool a well-trained DNN. Several methods have been proposed to design universal perturbations. However, these methods often leave visible traces in natural images. In this paper, we propose Sigma-UAP, a semi-universal adversarial attack, to enhance the quasi-imperceptibility of universal adversarial perturbations, in which the Sigma-map algorithm is leveraged to hide perturbations by identifying the low-frequency region of the image and eliminating the perturbations in that region. Then, we use a simple matrix calculation to augment the perturbation in the high-frequency region to ensure the attack effectiveness of the perturbation. The extensive empirical experiments show that, compared with the state-of-the-art universal adversarial attacks, Sigma-UAP method obtains excellent attack capabilities in visual effect and attack success rate.","PeriodicalId":221346,"journal":{"name":"2023 International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/prmvia58252.2023.00012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Although deep neural networks (DNNs) have achieved exceptional performance, they are shown to be fragile to universal adversarial perturbations (UAP), which can be applied to any images to fool a well-trained DNN. Several methods have been proposed to design universal perturbations. However, these methods often leave visible traces in natural images. In this paper, we propose Sigma-UAP, a semi-universal adversarial attack, to enhance the quasi-imperceptibility of universal adversarial perturbations, in which the Sigma-map algorithm is leveraged to hide perturbations by identifying the low-frequency region of the image and eliminating the perturbations in that region. Then, we use a simple matrix calculation to augment the perturbation in the high-frequency region to ensure the attack effectiveness of the perturbation. The extensive empirical experiments show that, compared with the state-of-the-art universal adversarial attacks, Sigma-UAP method obtains excellent attack capabilities in visual effect and attack success rate.
Sigma-UAP:一种针对深度神经网络的隐形半通用对抗性攻击
尽管深度神经网络(DNN)已经取得了卓越的表现,但它们在普遍对抗性扰动(UAP)面前很脆弱,这可以应用于任何图像来欺骗训练良好的DNN。已经提出了几种设计通用摄动的方法。然而,这些方法往往会在自然图像中留下可见的痕迹。在本文中,我们提出了一种半通用对抗性攻击Sigma-UAP,以增强通用对抗性扰动的准不可感知性,其中利用Sigma-map算法通过识别图像的低频区域并消除该区域的扰动来隐藏扰动。然后,我们使用简单的矩阵计算来增加高频区域的扰动,以确保扰动的攻击有效性。大量的实证实验表明,与目前最先进的通用对抗性攻击相比,Sigma-UAP方法在视觉效果和攻击成功率方面都具有优异的攻击能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信