{"title":"Sigma-UAP: An Invisible Semi-Universal Adversarial Attack Against Deep Neural Networks","authors":"Feiyang Qin, Wenqi Na, Song Gao, Shaowen Yao","doi":"10.1109/prmvia58252.2023.00012","DOIUrl":null,"url":null,"abstract":"Although deep neural networks (DNNs) have achieved exceptional performance, they are shown to be fragile to universal adversarial perturbations (UAP), which can be applied to any images to fool a well-trained DNN. Several methods have been proposed to design universal perturbations. However, these methods often leave visible traces in natural images. In this paper, we propose Sigma-UAP, a semi-universal adversarial attack, to enhance the quasi-imperceptibility of universal adversarial perturbations, in which the Sigma-map algorithm is leveraged to hide perturbations by identifying the low-frequency region of the image and eliminating the perturbations in that region. Then, we use a simple matrix calculation to augment the perturbation in the high-frequency region to ensure the attack effectiveness of the perturbation. The extensive empirical experiments show that, compared with the state-of-the-art universal adversarial attacks, Sigma-UAP method obtains excellent attack capabilities in visual effect and attack success rate.","PeriodicalId":221346,"journal":{"name":"2023 International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/prmvia58252.2023.00012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Although deep neural networks (DNNs) have achieved exceptional performance, they are shown to be fragile to universal adversarial perturbations (UAP), which can be applied to any images to fool a well-trained DNN. Several methods have been proposed to design universal perturbations. However, these methods often leave visible traces in natural images. In this paper, we propose Sigma-UAP, a semi-universal adversarial attack, to enhance the quasi-imperceptibility of universal adversarial perturbations, in which the Sigma-map algorithm is leveraged to hide perturbations by identifying the low-frequency region of the image and eliminating the perturbations in that region. Then, we use a simple matrix calculation to augment the perturbation in the high-frequency region to ensure the attack effectiveness of the perturbation. The extensive empirical experiments show that, compared with the state-of-the-art universal adversarial attacks, Sigma-UAP method obtains excellent attack capabilities in visual effect and attack success rate.