Optimal with respect to accuracy methods for evaluating hypersingular integrals

I. Boykov, A. Boykova
{"title":"Optimal with respect to accuracy methods for evaluating hypersingular integrals","authors":"I. Boykov, A. Boykova","doi":"10.15507/2079-6900.23.202104.360-378","DOIUrl":null,"url":null,"abstract":"In this paper we constructed optimal with respect to order quadrature formulas for evaluating one- and multidimensional hypersingular integrals on classes of functions Ωur,γ(Ω,M), Ω¯ur,γ(Ω,M), Ω=[−1,1]l, l=1,2,…,M=Const, and γ is a real positive number. The functions that belong to classes Ωur,γ(Ω,M) and Ω¯ur,γ(Ω,M) have bounded derivatives up to the rth order in domain Ω and derivatives up to the sth order (s=r+⌈γ⌉) in domain Ω∖Γ, Γ=∂Ω. Moduli of derivatives of the vth order (r<v≤s) are power functions of d(x,Γ)−1(1+|lnd(x,Γ)|), where d(x,Γ) is a distance between point x and Γ. The interest in these classes of functions is due to the fact that solutions of singular and hypersingular integral equations are their members. Moreover various physical fields, in particular gravitational and electromagnetic fields belong to these classes as well. We give definitions of optimal with respect to accuracy methods for solving hypersingular integrals. We constructed optimal with respect to order of accuracy quadrature formulas for evaluating one- and multidimensional hypersingular integrals on classes of functions Ωur,γ(Ω,M) and Ω¯ur,γ(Ω,M).","PeriodicalId":273445,"journal":{"name":"Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15507/2079-6900.23.202104.360-378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we constructed optimal with respect to order quadrature formulas for evaluating one- and multidimensional hypersingular integrals on classes of functions Ωur,γ(Ω,M), Ω¯ur,γ(Ω,M), Ω=[−1,1]l, l=1,2,…,M=Const, and γ is a real positive number. The functions that belong to classes Ωur,γ(Ω,M) and Ω¯ur,γ(Ω,M) have bounded derivatives up to the rth order in domain Ω and derivatives up to the sth order (s=r+⌈γ⌉) in domain Ω∖Γ, Γ=∂Ω. Moduli of derivatives of the vth order (r
求超奇异积分的最优精度方法
在本文中,我们构造了在函数类Ωur,γ(Ω,M), Ω¯ur,γ(Ω,M), Ω=[−1,1]l, l=1,2,…,M=Const上求一元和多维超奇异积分的最优阶正交公式,并且γ是实数。Ωur的功能属于类,γ(Ω,M)和Ω¯ur,γ(Ω,M)有限域Ω衍生品到仅仅秩序和衍生品的某事秩序(s = r +⌈γ⌉)在域Ω∖Γ,Γ=∂Ω。v阶导数(r
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信