Planar array synthesis with scattered inverted-element locations using neural networks

H. Elkamchouchi, G.A. Saleh
{"title":"Planar array synthesis with scattered inverted-element locations using neural networks","authors":"H. Elkamchouchi, G.A. Saleh","doi":"10.1109/NRSC.2001.929166","DOIUrl":null,"url":null,"abstract":"A new approach is proposed for the planar array synthesis problem. The method assumes the array elements to be scattered in a plane with each element having a brother element with the same excitation but at an inverted location. These assumptions allow the analogy between the array factor and the output of an artificial neural network (ANN) that is made to learn it. Thus, the parameters of the planar array can be extracted from the weights and biases of the trained ANN. Results of using the approach to synthesize uniformly spaced nonuniformly excited arrays and nonuniformly spaced nonuniformly excited arrays are shown and compared.","PeriodicalId":123517,"journal":{"name":"Proceedings of the Eighteenth National Radio Science Conference. NRSC'2001 (IEEE Cat. No.01EX462)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eighteenth National Radio Science Conference. NRSC'2001 (IEEE Cat. No.01EX462)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRSC.2001.929166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A new approach is proposed for the planar array synthesis problem. The method assumes the array elements to be scattered in a plane with each element having a brother element with the same excitation but at an inverted location. These assumptions allow the analogy between the array factor and the output of an artificial neural network (ANN) that is made to learn it. Thus, the parameters of the planar array can be extracted from the weights and biases of the trained ANN. Results of using the approach to synthesize uniformly spaced nonuniformly excited arrays and nonuniformly spaced nonuniformly excited arrays are shown and compared.
基于神经网络的散射反元位置平面阵列综合
提出了一种解决平面阵列综合问题的新方法。该方法假定阵列元素分散在平面上,每个元素具有具有相同激励但位置相反的兄弟元素。这些假设使得阵列因子和学习它的人工神经网络(ANN)的输出之间存在类比。因此,可以从训练好的神经网络的权值和偏差中提取平面阵列的参数。给出了用该方法合成均匀间隔非均匀激励阵列和非均匀间隔非均匀激励阵列的结果,并进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信